Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15793
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBuyukasik, Engin-
dc.date.accessioned2025-07-25T16:55:03Z-
dc.date.available2025-07-25T16:55:03Z-
dc.date.issued2010-
dc.identifier.issn1726-3255-
dc.identifier.issn2415-721X-
dc.identifier.urihttps://hdl.handle.net/11147/15793-
dc.description.abstractLet R be a ring and tau be a preradical for the category of left R-modules. In this paper, we study on modules whose maximal submodules have tau-supplements. We give some characterizations of these modules interms their certain submodules, so called tau-localsubmodules. For some certain preradicals tau, i.e. tau=delta and idempotent tau, we prove that every maximal submodule of M has a tau-supplement if and only if every cofinite submodule of M has a tau-supplement. For a radical tau onR-Mod, we prove that, forevery R-module every submodule is a tau-supplement if and only if R/tau(R) is semisimple and tau is hereditaryen_US
dc.language.isoenen_US
dc.publisherLuhansk Taras Shevchenko Natl Univen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPreradicalen_US
dc.subjectTau-Supplementen_US
dc.subjectTau-Localen_US
dc.titleModules Whose Maximal Submodules Have Τ-Supplementsen_US
dc.typeArticleen_US
dc.institutionauthorBuyukasik, Engin-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.startpage1en_US
dc.identifier.endpage9en_US
dc.identifier.wosWOS:000420549600001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
dc.description.woscitationindexEmerging Sources Citation Index-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Oct 25, 2025

Page view(s)

376
checked on Oct 27, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.