
ON IMPROVING THE PERFORMANCE OF
REPETITIVE LEARNING CONTROLLERS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Electronics and Communication Engineering

by
Necati Çobanoğlu
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ABSTRACT

ON IMPROVING THE PERFORMANCE OF REPETITIVE LEARNING
CONTROLLERS

Robot manipulators are widely used to perform pre–defined tasks repetitively.

Nearly all of the mass production factories use the robot manipulators to perform specific

operations over and over again. In such a system, the control design may contain some

difficulties, unavailabilities and/or there would be additive disturbances due to the periodic

motion. Moreover, cost reduction may be vital, hence sensor usage has to be reduced.

In the first part of this thesis, to address those restrictions, a model free full state

feedback repetitive learning controller which is fused with a one–layer neural network is

proposed for robot manipulator which performs a periodic motion. Stability of the sys-

tem is ensured via Lyapunov based techniques. Numerical simulations and experimental

results are introduced to demonstrate the performance of the proposed controller.

In the second part of the thesis, under the additional constraint that velocity mea-

surements being unavailable, output feedback repetitive learning controller fused with a

neural network term is investigated. The dynamic model of the robot manipulator is again

considered as uncertain to avoid its usage as part of the control design, and the reference

position vector is still considered to be periodic. The stability of the closed loop sys-

tem is investigated via Lyapunov based techniques. Numerical simulations are added to

demonstrate the proposed controller performance.
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ÖZET

YİNELEMELİ ÖĞRENMELİ DENETLEYİCİLERİN
BAŞARIMLARININ İYİLEŞTİRİLMESİ

Robotik sistemler önceden tanımlanmış tekrarlayan görevler için sıklıkla tercih

edilmektedirler. Neredeyse tüm seri üretim yapan fabrikalar bu robotik sistemleri tekrar

tekrar uygulanması istenilen görevler için kullanmaktadırlar. Bu sistemlerde denetleyici

tasarımı bazı zorluklar, eksiklikler ve/veya periyodik hareketten kaynaklı bozucu etkenler

içerebilir. Maliyeti azaltmanın önemi göz önünde bulundurularak robotik sistemlerdeki

algılayıcı kullanımı azaltılmalıdır.

Bu tezin ilk bölümünde, üstte belirtilen sistem kısıtları altında, periyodik hareket

eden robot sistemi için, yapay sinir ağı entegre edilmiş, modelden bağımsız, tüm durum

geri beslemeli, yinelemeli öğrenmeli denetleyici tasarlanmıştır. Sistem kararlılığı, Lya-

punov tabanlı kararlılık analizi yöntemleri aracılığıyla sağlanmıştır. Tasarlanan denet-

leyicinin başarımı sayısal benzetimler ve deneyler aracılığıyla gösterilmiştir.

Tezin ikinci bölümünde, üstteki kısıtlara ek olarak eklem hızlarının da ölçülememesi

göz önüne alınarak, yapay sinir ağıyla entegre edilmiş çıkış geri beslemeli yinelemeli

öğrenmeli denetleyici tasarlanmıştır. Tasarlanan denetleyicinin başarımı sayısal benze-

timler aracılığıyla gösterilmiştir.
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CHAPTER 1

INTRODUCTION

Due to the increasing demand, nearly all of the mass production factories are

forced to use robot manipulators in their production lines. According to manufacturing

defects, the usage of robot manipulators is more accurate than humans. Moreover, they are

much faster and relatively stronger than humans. Accordingly, usage of robots provides a

huge cost reduction especially in mass production lines.

Robot manipulators in industrial applications usually work in well defined envi-

ronments to perform specific operations. Assembling motor components of a car or draw-

ing the hood of the car can be given as examples among those operations. While working

on such tasks, robot manipulator actuates on the precisely placed objects in customized

workspace even humans are not allowed the enter. For the most of these operations in the

production lines, robot manipulators are used for pre–defined repeating tasks. These tasks

mandate robot manipulators to perform pre–defined operations over and over again. In

these applications, commonly, the main objective is to make the robot manipulator track

given trajectories without exceeding the required tolerance which is usually very small.

In addition to industrial uses of robot manipulators, there are other applications

that require the robots perform repeating tasks. While increasing the sensor accuracy and

driving sensitivity of the actuator, robot manipulators are increasingly preferable without

requiring any well defined environment. Hence applications including human–robot inter-

actions also increased. Rehabilitation treatments of patients (Doğan, 2016) can be given

as an example. Due to the nature of the rehabilitation treatment, patients are required to

practice pre–defined movements over and over again. As presented above, a significant

amount of applications require the robot manipulators to track trajectories that results in

performing repeating tasks.

The robot manipulators are commonly modeled by using energy based methods

such as Lagrange, Hamilton and Euler methods (Dawson et al., 1995). Lagrangian based

dynamic models are among the most preferred ones in the literature (Lewis et al., 2003).

Dynamic models of robot manipulators include several types of nonlinearities thus are

classified as nonlinear, and nonlinear controllers are to be designed to first guarantee sta-

bility of the system and to ensure tracking of a desired trajectory accurately. One control

methodology is called feedback linearization or computed torque control (Lewis et al.,
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2003). In this approach, the exact dynamic model knowledge of the robot manipulator is

essential to overcome the adverse effects of the model nonlinearities by canceling them

out with the known model terms to yield a linear system where linear control techniques

(such as proportional, integral and derivative control) are then applied. Resulting is a full

state feedback control design, that requires accurate dynamic model knowledge and joint

position and joint velocity measurements.

It is highlighted that modeling inaccuracies are common in all mechatronic sys-

tems including the robot manipulators. When the dynamic models of the robot manipula-

tors have uncertain constant modeling parameters, such as uncertain link length, uncertain

center of mass position, uncertain mass of a link, adaptive control techniques can then be

utilized in control design to deal with these parametric/structural uncertainties (Ioannou

and Sun, 1996), (Lavretsky and Wise, 2013), (Lewis et al., 2003). Adaptive control tech-

niques mandate the dynamic model uncertainties to be written as multiplication of known

and available terms, commonly called as a regressor matrix, with an uncertain model

parameter vector. While the dynamic models obtained via Lagrangian based methods

satisfy the linear parametrization property, adaptive methods fail to cope with the model

uncertainties when the linear parametrization is not satisfied or when the uncertainty is

time–varying. Another weakness of adaptive methods is that the linear parametrization is

robot–specific, and it should be obtained for each robot separately.

In addition to parametric uncertainties, robot manipulator dynamic models may in-

clude other types of uncertainties which may be time–varying and/or state–varying. These

uncertainties are commonly called as unstructured uncertainties. A good amount of past

research on control of robot manipulators were devoted to design of robust controllers to

deal with both parametric and unstructured uncertainties (Lewis et al., 2003), (Dawson

et al., 1995), (Qu, 1998). One robust control methodology is sliding mode control (Utkin

et al., 2009). While ensuring stability of the closed loop and asymptotic tracking, the

utilization of signum of the error in the design of the controller is a major problem. To

avoid chattering effects due to the discontinuity of signum function in sliding mode con-

trol, continuous approximations of signum function are utilized. Among these functions

hyperbolic tangent function and saturation function are the most commonly utilized ones.

However, when continuous approximations of the signum function are utilized, asymp-

totic stability is lost and uniform ultimate boundedness of the tracking error is no longer

possible (i.e., the tracking error can be driven to a neighborhood of the origin).

On the other hand, there are other robust control techniques that can be utilized to

compensate for dynamic model uncertainties (Qu, 1998). High gain and high frequency

2



control techniques are among them. In high gain control, usually a control gain which

is higher than the bounds of the modeling uncertainties is required to stabilize the closed

loop system. In high frequency control, for bigger tracking errors, the robust term behaves

like a signum function and immediately drives the tracking error to the vicinity of the

origin and when the tracking error is less than some known bound, then the robust term

acts like a high gain controller. In that sense, high frequency control can roughly be

treated as a controller in between sliding mode control and high gain control. However,

both high gain and high frequency controllers can ensure uniform ultimate boundedness

of the tracking error.

Learning control algorithm is one of the robust control algorithms which is used

to compensate for the lack of exact model knowledge. Specifically, in repetitive learn-

ing control, unlike adaptive control, dynamic model uncertainties can be handled without

the need of linearly parameterizing the model uncertainties where the uncertainties are

learned as a whole by using an update rule (Arimoto et al., 1984), (Kawamura et al.,

1988), (Messner et al., 1991) and (Horowitz, 1993). For the design of repetitive learning

controllers, the main model assumption requirement is that the desired trajectory to be

tracked must be periodic with a known period (Kawamura et al., 1988), (Horowitz, 1993)

and (Dixon et al., 2002). As highlighted above, a significant amount of tasks performed

by robot manipulators require tracking of a periodic desired trajectory. In performing

periodic tasks, repetitive learning controllers are amongst the most effective ones. The

periodicity of the desired trajectory can be considered as a set of trials and the learning

term is referred to the behavior of the designed controller which makes an effort to ob-

tain more accurate tracking performance in every incoming trial. In repetitive control

design (Sadegh and Horowitz, 1990), if the desired trajectory is periodic then the desired

dynamic model of the robot manipulator (i.e., with the desired joint position, velocity, ac-

celeration being submitted into the dynamic model) is periodic as well. Accordingly, the

learning term is used to achieve more accurate tracking performance in every consecutive

attemp (Lewis et al., 2003). A good amount of research was devoted to repetitive learning

controller design and their extensions (Hillerström and Walgama, 1996), (Bristow et al.,

2006), (Xu and Tan, 2003). Some of the earlier works are (Hara et al., 1988), (Tsai et al.,

1988), (Messner et al., 1991), (Horowitz, 1993). Later, to ensure boundedness of the

closed loop signals, saturation function based update laws were proposed in (Sadegh and

Horowitz, 1990) and (Dixon et al., 2002). In some recent works, such as (Tomei and

Verrelli, 2015), a linearized update law was obtained from the saturation function based

on Pade approximants. While this approach allowed utilization of linear controllers in
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conjunction with the learning law, asymptotic stability obtained in the previous works

was lost and convergence of the tracking error to a ball around the origin (whose size can

be reduced with increasing control gains) can be ensured. Some other extensions (Ver-

relli, 2015) and several applications Scalzi et al. (2015) of repetitive learning controllers

are also available. One main advantage of repetitive learning control is that, unlike the

other robust controllers, asymptotic tracking can be obtained. The learning update rule

is based on saturation function and a gain higher than the bounds of the dynamic model

uncertainties is required. However, this high gain requirement causes chattering–like phe-

nomenon at the end of each period which is an issue that should be dealt with especially

in applications.

In the literature, another model–independent method used for controlling robot

manipulators is the neural network based techniques. Specifically, neural networks were

utilized to compensate for some part of the dynamic model uncertainties when controlling

robot manipulator (Lewis, 1999), (Kim et al., 2000). Different from the adaptive control

methods, in neural network based control, there is no need to obtain a regressor matrix,

and in that sense, neural network based methods are model independent. However, neural

network based techniques can provide uniform ultimate boundedness of the tracking error.

In Table 1.1 an overview of previous works in the literature is demonstrated.

In the control literature review above, only the controllers that requires full state

feedback (i.e., when joint position and velocity measurements are available) are discussed.

However, several industrial robots are not equipped with joint velocity sensing and this

restriction should also be addressed in any realistic control design. To deal with the lack

of joint velocity sensing, there are two commonly preferred methods. One of them relies

on reconstructing the joint velocities through the design of a velocity observer (Nicosia

and Tomei, 1990), (Gu, 1990), (Lewis et al., 2003). Alternatively, a series of filters can be

utilized to compensate for the lack velocity sensing without estimating the joint velocities.

1.1. Motivation and Contributions

In this thesis, tracking control of robot manipulators is aimed when the desired

trajectory is periodic and the dynamic model includes both parametric and unstructural

uncertainties. While repetitive learning controllers are preferred when the desired trajec-

tory to be tracked is periodic, an important shortcoming of this type of controllers is the

need for a high gain in the learning update rule which is required to be greater then the

bound of the uncertainties in the dynamic model. This increased feedback gain in the
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Table 1.1. Comparison table

Required model knowledge Type of stability

Computed torque control Full model knowledge Exponential stability

Adaptive control Partial model knowledge Asymptotic stability

(linear parametrization)

Sliding mode control Bound of model Asymptotic stability

uncertainties

Continuous approximation of Bound of model Uniform ultimate

sliding mode control uncertainties boundedness

High gain and high frequency Bound of model Uniform ultimate

control uncertainties boundedness

Learning Control Bound of model Asymptotic stability

uncertainties

Neural network based Model independent Uniform ultimate

control boundedness

learning update rule causes chattering like problems at the end of each period. This is-

sue is an important problem in applications as the motors in the joints may not respond

to fast changes in the designed control input torque. Overcoming this issue is the main

motivation of this thesis.

In an attempt to decrease the adverse effects of the chattering like problems at

the end of each period, compensating at least for some part of the uncertainties in the

dynamic model by using additional techniques is aimed. Provided that this is achieved,

the remaining part of the uncertainties in the dynamic model would be bounded with a

relatively smaller gain in the learning update rule which will result in chattering with a

lesser magnitude. Neural network based compensation is chosen as the additional compo-

nent to compensate for some part of the uncertainties in the dynamic model (Lewis et al.,

1998), (Kim and Lewis, 1998). There are several reasons for the neural networks based

compensation to be chosen. One reason is the universal approximation property of neu-

ral networks which make them suitable for compensating for the modeling uncertainties.

Secondly, different from the adaptive methods, neural network based compensation does

not require obtaining a regressor matrix and thus does not require dynamic model to be

known. Thirdly, the update rules are online and thus no offline tuning is required.

In this thesis, two open control problems based on the availability of the joint ve-
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locity measurements are investigated. Specifically, firstly, the full state feedback control

problem is investigated in Chapter 2. In this case, both joint position and velocity mea-

surements are considered to be available. Next, in Chapter 3, the output feedback control

problem is studied. This is a more restrictive scenario than the previous case, since only

the joint position measurements are considered to be available.

For the full state feedback control problem, the result is a novel nonlinear propor-

tional derivative controller having a repetitive learning component and a neural network

component. Some part of the uncertainties in the dynamic model are compensated with

the neural network component and the remaining part of the uncertainties is compensated

with the repetitive learning component. Specifically, the uncertainties in the dynamic

model are combined in a vector and a one–layer neural network model of this vector is

considered. The stability of the closed loop system is investigated with the design of

a novel Lyapunov function and asymptotic stability is obtained. Numerical simulation

results are presented and experiments are performed by using the in–house developed 3

degree of freedom planar robot manipulator (Sahin et al., 2017).

For the output feedback control problem, a novel output feedback, neural network

based repetitive learning control design is presented. This control design compensates for

some part of the uncertainties in the dynamic model with neural network component, and

the remaining part of the uncertainties is compensated with the repetitive learning com-

ponent without utilizing the joint velocity measurements. To address the lack of velocity

sensing, an observer based output feedback strategy is employed. The final form of the

control input is a dynamic model independent output feedback neural network based con-

troller with a repetitive learning feedforward component. The stability of the closed loop

system is investigated via the use of a novel, four step Lyapunov based strategy. Firstly,

the boundedness of all the closed loop signals is investigated. Next, the boundedness of

the velocity observation error is utilized in obtaining an integral inequality where this re-

sult is used in obtaining an auxiliary non–negative integral function that is later used in

the convergence analysis. The stability analysis yields semi global asymptotic stability of

both the velocity observer error and the tracking error. Numerical simulation results are

presented to demonstrate the efficacy of the proposed observer–controller couple.

1.1.1. Novelties

In this thesis, the chattering like problem of at the end of each period appearing

repetitive learning controllers is addressed. Specifically, in a novel departure from the
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existing works in the literature, neural network based compensation terms are fused with

saturation based repetitive learning controllers appearing. For the completeness of this

research, two control problems are considered depending on the availability of velocity

measurements. In the first one, a full state feedback controller is designed, while the

second one is an observer based output feedback controller. In the stability analysis for

both controllers, novel Lyapunov functions are designed to ensure asymptotic stability.

To summarize the novelties of proposed controllers in this thesis, Table 4.1 is added.

1.1.2. Publications

The results obtained in this thesis resulted in original research publications. Specif-

ically, the research results in Chapter 2 are presented at the American Control Conference

and published in:

• N. Cobanoglu, E. Tatlicioglu, and E. Zergeroglu, Neural Network Based Repetitive

Learning Control of Robot Manipulators, Proc. of American Control Conference,

2017, Seattle, WA, USA.

The research outputs of Chapter 3 are published by IEEE Control Systems Letters as a

full research paper as

• E. Tatlicioglu, N. Cobanoglu, and E. Zergeroglu, Neural Network based Repeti-

tive Learning Control of Euler Lagrange Systems: An Output Feedback Approach.

IEEE Control Systems Letters, 2018, pp. 13–18.

which are also presented at the IEEE Conference on Decision and Control and published

in:

• E. Tatlicioglu, N. Cobanoglu, and E. Zergeroglu, Neural Network based Repeti-

tive Learning Control of Euler Lagrange Systems: An Output Feedback Approach,

Proceedings of IEEE International Conference on Decision and Control, 2017, Mel-

bourne, VIC, Australia.

1.2. Organization of Thesis

The organization of the rest of this thesis is arranged as follows. It is highlighed

that, the results of the thesis research are preferred to be presented via chapters that are
7



self contained. In Chapter 2, full state feedback joint space neural network based learn-

ing controller is proposed for an n degree of freedom robot manipulator which performs

a periodic motion. In Section 2.1, robot manipulator dynamic model and its properties

are presented. In Section 2.2, tracking error system development and the control design

are given. In Section 2.3, Lyapunov based stability analysis is presented. In Sections

2.4 and 2.5, numerical simulation and experiment results are presented, respectively. Fi-

nally, in Section 2.6, concluding remarks are given. In Chapter 3, output feedback joint

space neural network based repetitive learning controller is proposed for an n degree of

freedom robot manipulator tracking a periodic trajectory. In Section 3.1, dynamic model

and essential model properties of robot manipulator are given. For the completeness and

the compactness of the controller design, some expressions that are previously given in

Chapter 2 are included also in Chapter 3. In Section 3.2, controller and observer designs

are presented along with tracking and observer error dynamics. In Section 3.3, Lyapunov

type stability analysis is given. In Section 3.4, numerical simulation are presented. In

Section 3.5, concluding remarks are given. Finally, in Chapter 4, the results of the thesis

research are discussed and some possible future works are suggested.
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CHAPTER 2

JOINT SPACE LEARNING CONTROL: FULL STATE

FEEDBACK APPROACH

Control of robot manipulators performing periodic tasks is presented in this chap-

ter. The control problem is complicated due to presence of uncertainties in the robot

manipulator’s dynamic model. To address this restriction, a model free repetitive learning

controller design is aimed. To reduce the heavy control effort, in a novel departure from

the existing literature, a neural network based compensation term is fused with the repet-

itive learning controller. The convergence of the tracking error to the origin is ensured

via Lyapunov based techniques. Numerical simulations and experiments are performed

to demonstrate the viability of the proposed controller.

2.1. System Model and Properties

The dynamic/mathematical model of an n degree of freedom revolute joint robot

manipulator is given as (Lewis et al., 2003)

M (q) q̈ + C (q, q̇) q̇ +G (q) + Fdq̇ = τ (2.1)

where q(t), q̇(t), q̈(t) ∈ Rn denote joint positions, velocities, and accelerations respec-

tively, M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the centripetal Coriolis

matrix, G(q) ∈ Rn represents the gravitational effects, Fd ∈ Rn×n denotes the constant

frictional effects, and τ(t) ∈ Rn is the control input torque.

The dynamic model terms satisfy the standard properties given below.

Property 1: The inertia matrix is positive definite, symmetric and satisfies the

following inequalities (Lewis et al., 2003)

m ‖η‖ ≤ ηTM (q) η ≤ m̄ ‖η‖ ∀η ∈ Rn (2.2)

where m, m̄ are known positive bounding constants.

Property 2: The inertia matrix and the centripetal Coriolis matrix satisfy the skew

symmetry property (Lewis et al., 2003)

ηT
(
Ṁ − C

)
η = 0 ∀η ∈ Rn. (2.3)
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Property 3: The norms of the dynamic model terms can be upper bounded as (Lewis

et al., 2003)

‖C (q, q̇)‖i∞ ≤ ζc ‖q̇‖ (2.4)

‖G (q)‖ ≤ ζg (2.5)

‖Fd‖i∞ ≤ ζf (2.6)

where ζc, ζg, ζf are known positive bounding constants, and ‖·‖i∞ is the induced infinity

norm of a matrix.

2.2. Error System Development and Control Design

The main objective of the control input torque design is to ensure tracking of a

periodic desired joint position vector. Mathematically speaking, q (t) → qd (t) is aimed

where qd (t) ∈ Rn is periodic with a known period T in the sense that qd (t) = qd (t− T ),

q̇d (t) = q̇d (t− T ), q̈d (t) = q̈d (t− T ). Desired joint position vector and its time deriva-

tives are bounded functions of time.

The control problem is constrained by the dynamic model terms in (2.1) that are

uncertain and thus are not available for control design. In view of this restriction, the

control design should be model independent.

The joint position tracking error e (t) ∈ Rn is defined as

e , qd − q. (2.7)

Another error, shown with r (t) ∈ Rn, is defined as

r , ė+ αe (2.8)

where α ∈ Rn×n is a constant, positive definite, diagonal control gain matrix.

In an attempt to obtain open loop error system for r (t), first the time derivative of

(2.8) is taken which is then multiplied with the inertia matrix to yield

Mṙ = −Cr − τ + Ω (2.9)

where (2.1) and (2.8) were utilized and Ω (q, q̇, e, ė, q̈d) ∈ Rn is defined as

Ω ,M (q) (q̈d + αė) + C (q, q̇) (q̇d + αe) +G (q) + Fdq̇. (2.10)

An auxiliary vector, shown with Ωd (qd, q̇d, q̈d) ∈ Rn, is obtained by setting q → qd and

q̇ → q̇d in Ω which is given as

Ωd ,M (qd) q̈d + C (qd, q̇d) q̇d +G (qd) + Fdq̇d. (2.11)
10



Property 4: Via utilizing the universal approximation property of neural networks

(Lewis et al., 1998), (Kim and Lewis, 1998), (Hornik et al., 1989), (Lewis, 1999), the

auxiliary vector Ωd is can be written by using one layer neural network as (Lewis et al.,

2003)

Ωd = ϕTσ + ε (2.12)

where ϕ ∈ R3n×n is the constant ideal weight matrix, σ (xd) ∈ R3n is the activation func-

tion, ε (xd) ∈ Rn is the functional reconstruction error, and xd (t) ,
[
qTd q̇Td q̈Td

]T
∈

R3n is the combined form of desired joint position and its time derivatives. For feedback

control using neural networks, usually the activation function is required to be smooth

enough so that at least its first time derivative exists. To meet this requirement, in this

thesis, hyperbolic tangent function is preferred as the activation function. The entries of

the functional reconstruction error are bounded in the sense that (Lewis et al., 1998)

ε̄i ≥ |εi (xd)| ∀i = 1, · · · , n (2.13)

where ε̄i are constant, positive bounding scalars. Furthermore, since the functional recon-

struction error is a function of only the desired joint position and its time derivatives, it is

also periodic with period T .

An auxiliary error–like term, shown with χ (t) ∈ Rn, is defined as

χ , Ω− Ωd. (2.14)

Remark 1: It is noted that, as shown in (Sadegh and Horowitz, 1990), the norm of χ can

be upper bounded as

‖χ‖ ≤ ρ (‖e‖) ‖z‖ (2.15)

where ρ (‖e‖) ∈ R is a known, positive bounding function and z (t) ,
[
eT rT

]T
∈

R2n is the combined error vector.

In view of (2.12) and (2.14), (2.9) can be rewritten as

Mṙ = −Cr − τ + ϕTσ + ε+ χ. (2.16)

Based on the open loop error system in (2.16), the control input torque is designed

as

τ = Krr + knρ
2r + e+ ε̂ (t) + Ω̂ (t) (2.17)

where Kr ∈ Rn×n is a constant, positive definite, diagonal control gain matrix, kn ∈ R is

a constant, positive scalar damping gain. In (2.17), ε̂ (t) ∈ Rn is the learning component

of the control input torque that is updated according to

ε̂ (t) = Satε̄ (ε̂ (t− T )) + klr (2.18)
11



where kl ∈ R is a constant, positive scalar control gain, Satε̄{·} is the vector form of the

standard saturation function where ε̄ ,
[
ε̄1 · · · ε̄n

]T
denotes upper and lower limits.

Also in (2.17), Ω̂ (t) ∈ Rn is the neural network component of the control input torque

that is generated as

Ω̂ = ϕ̂Tσ (2.19)

where ϕ̂ (t) ∈ R3n×n is the estimated weight matrix generated online according to

˙̂ϕ = knnσr
T (2.20)

where knn ∈ R is a constant, positive scalar control gain. When boundedness of the

entries of ϕ̂ (t) is a concern, a projection algorithm, such as the one in (Krstic et al.,

1995), can be utilized on the right hand side of (2.20) to keep remain between some a

priori known lower and upper bounds.

From the control input torque in (2.17), whose flow chart is given in Figure 2.1,

and its components in (2.18), (2.19) and (2.20), it is clear that knowledge of dynamic

model terms in (2.1) is not required by the control input torque design. The control input

torque in (2.17) can be considered as a nonlinear PD controller with repetitive learning

and neural network components. Each term of the control input torque in (2.17) is briefly

described in the following. The termKrr is a feedback term, the term knρ
2r is introduced

to damp out the undesirable effects of χ in the open loop error system, the term e will

cancel a cross term that will appear in the Lyapunov type stability analysis, the term Ω̂ (t)

is introduced to update the neural network weight matrix, while ε̂ (t) will compensate for

the negative effects of the functional reconstruction error.

�(�)

PD

Robot
, �� �˙

�
, � �˙�, � �

Saturation Delay
T

Ω
̂ 

Figure 2.1. Flow chart for FSFB Controller

Substituting the control input torque in (2.17) into the open loop error system in (2.16)

gives the following closed loop error system

Mṙ = −Cr −Krr − e+ χ− knρ2r + ε− ε̂+ ϕ̃Tσ (2.21)
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where ϕ̃ (t) ∈ R3n×n is the difference between the ideal weight matrix and the estimated

weight matrix

ϕ̃ , ϕ− ϕ̂. (2.22)

2.3. Stability analysis

In this section, stability of the closed loop error system will be investigated. Lya-

punov based stability analysis method will be preferred. Following theorem is introduced.

Theorem 2.3.1 Based on the control input torque in (2.17), the neural network compo-

nent in (2.19) with the estimated weight matrix update rule in (2.20) and the learning

update rule in (2.18), the closed loop system is guaranteed to be globally asymptotically

stable in the sense that,

‖e(t)‖ → 0 as t→ 0. (2.23)

Proof: Let V (t) ∈ R be defined as

V ,
1

2
eT e+

1

2
rTMr +

1

2knn
tr{ϕ̃T ϕ̃}

+
1

2kl

∫ t

t−T
‖Satε̄ (ε (ν))− Satε̄ (ε̂ (ν))‖2 dν (2.24)

where tr{·} is the trace operator. From the above definition, V (t) is non–negative.

Taking the time derivative of the Lyapunov function gives

V̇ = eT ė+ rTMṙ +
1

2
rTṀr +

1

knn
tr{ϕ̃T ˙̃ϕ}

+
1

2kl
‖Satε̄ (ε (t))− Satε̄ (ε̂ (t))‖2

− 1

2kl
‖Satε̄ (ε (t− T ))− Satε̄ (ε̂ (t− T ))‖2 (2.25)

where Leibniz rule (Kreyszig, 2006) was utilized. Substitutions from the error system will

be done subsequently. Before that the term in the last line of the time derivative of the

Lyapunov function is examined

Satε̄ (ε (t− T ))− Satε̄ (ε̂ (t− T )) = Satε̄ (ε (t))− ε̂ (t) + klr

= ε (t)− ε̂ (t) + klr (2.26)

where for the first equality the periodicity of ε (t) and (2.18) were utilized, while the

boundedness of the entries of ε (t) in (2.13) yielded the second equality. Substituting (2.8)
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for ė, (2.21) for Mṙ, (2.20) along with the time derivative of (2.22) for ˙̃ϕ, and (2.26) into

(2.25) yields

V̇ = eT (r − αe) + rT
(
−Cr −Krr − e+ χ− knρ2r + ε− ε̂+ ϕ̃Tσ

)
(2.27)

+
1

2
rTṀr − tr{ϕ̃TσrT}+

1

2kl
‖Satε̄ (ε (t))− Satε̄ (ε̂ (t))‖2

− 1

2kl
‖ε (t)− ε̂ (t) + klr‖2 .

Following property of the trace operator is essential (Lewis et al., 2003)

tr{ϕ̃TσrT} = rT ϕ̃Tσ. (2.28)

From (2.28), canceling out common terms, utilizing skew symmetry property in (2.3),

substituting (2.28), rewriting the last term, and then regrouping results in

V̇ = −eTαe− rTKrr + rT
(
χ− knρ2r

)
+ rT (ε− ε̂)

+
1

2kl
‖Satε̄ (ε (t))− Satε̄ (ε̂ (t))‖2 − 1

2kl
‖ε (t)− ε̂ (t)‖2

− (ε (t)− ε̂ (t))T r − kl
2
‖r‖2 (2.29)

from which canceling out common terms gives

V̇ = −eTαe− rTKrr −
kl
2
‖r‖2 + rT

(
χ− knρ2r

)
+

1

2kl
‖Satε̄ (ε (t))− Satε̄ (ε̂ (t))‖2 − 1

2kl
‖ε (t)− ε̂ (t)‖2 . (2.30)

Combining (2.15) with the bracketed term in the first line gives

rT
(
χ− knρ2r

)
≤ ρ ‖r‖ ‖z‖ − knρ2 ‖r‖2

= −
(√

knρ ‖r‖ −
1

2
√
kn
‖z‖
)2

+
1

4kn
‖z‖2

≤ 1

4kn
‖z‖2 . (2.31)

If ‖ε (t)− ε̂ (t)‖2 can be proven to be greater than ‖Satε̄ (ε (t))− Satε̄ (ε̂ (t))‖2 then asymp-

totic stability can be achieved. Instead of achieving this inequality, in Appendix A,

|εi (t)− ε̂i (t)| ≥ |satε̄i (εi (t))− satε̄i (ε̂i (t))| (2.32)

∀i = 1, · · · , n will be proven, from which it is clear that

‖ε (t)− ε̂ (t)‖2 ≥ ‖Satε̄ (ε (t))− Satε̄ (ε̂ (t))‖2 . (2.33)
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Making use of (2.31) and (2.33) with (2.30) gives

V̇ ≤ −eTαe− rTKrr −
kl
2
‖r‖2 +

1

4kn
‖z‖2

≤ −
[
min{λmin (α) , λmin (Kr) +

kl
2
} − 1

4kn

]
‖z‖2

= −β ‖z‖2 (2.34)

with positive β ,

[
min{λmin (α) , λmin (Kr) +

kl
2
} − 1

4kn

]
where λmin (α) and λmin (Kr)

denote the minimum eigenvalues of α and Kr, respectively.

From the structures of (2.24) and (2.34), V (t) ∈ L∞ can be concluded. From

(2.24), e (t), r (t) ∈ L∞ follows. From (2.8), ė (t) ∈ L∞ can be shown. From (2.7)

and its time derivative, q (t), q̇ (t) ∈ L∞ are proven. Utilizing the above boundedness

statements along with the boundedness of the desired trajectory and its time derivatives,

from (2.10), Ω (t) ∈ L∞ can be proven. Since the output of the saturation function is

always bounded, then from (2.18), ε̂ (t) ∈ L∞ is ensured. Provided that ϕ̂ (t) ∈ L∞,

which can be ensured via utilizing a bounding projection algorithm as in (Krstic et al.,

1995), from (2.19), Ω̂ (t) ∈ L∞. These boundedness statements can be used with (2.17) to

prove τ (t) ∈ L∞. From (2.9), ṙ (t) ∈ L∞ can be ensured, from which q̈ (t) ∈ L∞ can be

guaranteed. The remaining terms can be proven as bounded via utilizing standard signal

chasing arguments.

Integrating (2.34) in time from the initial time t0 to t = +∞ yields∫ +∞

t0

β ‖z (t)‖2 dt ≤ V (t0)− V (+∞) ≤ V (t0) (2.35)

from which z (t) ∈ L2 is proven. Since z (t), ż (t) ∈ L∞ was shown as well, then from

Barbalat’s Lemma in (Krstic et al., 1995), (Khalil, 2002), ‖z (t)‖ → 0 as t → +∞ is

guaranteed and thus achieving asymptotic joint position tracking.

2.4. Simulation Results

Numerical simulations were performed with the dynamic model of a two degree

of freedom planar robot manipulator. The dynamic model in (2.1) was considered with

15



the following terms

M =

[
p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

]
(2.36)

C =

[
−p3s2q̇2 −p3s2(q̇1 + q̇2)

p3s2q̇1 0

]
(2.37)

G =

[
p4c1 + p5c12

p5c12

]
(2.38)

Fd =

[
p6 0

0 p7

]
(2.39)

in which s2 = sin(q2), c2 = cos(q2), c12 = cos(q1 + q2), p1 = 3.473, p2 = 0.193,

p3 = 0.242, p4 = 12.936, p5 = 3.528, p6 = 5.3, p7 = 1.1. It is highlighted that, when

performing the numerical simulations, the above dynamic model was utilized only to

simulate the motion of the robot manipulator, and it was not utilized as part of the control

input torque.

The periodic desired joint position vector was selected as

qd =

[
0.3 sin(1.5t)

0.5π + 0.3 sin(1.5t)

]
rad. (2.40)

The robot manipulator is considered to be at rest with the initial joint position as q (0) =

[0.3, 0.3]T rad. The initial values of the entries of the estimated weight matrix were set to

zero while hyperbolic tangent function was chosen as the activation function. The control

gains were adjusted via trial and error and the gain of r (t) in (2.17) is considered to be

constant and combined in Kr. Satisfactory tracking performance is obtained when the

control gains were chosen as Kr = 51.5, α = 1, kl = 0.1 and knn = 15.

The results of the simulation are given in Figures 2.2–2.7. The joint position

tracking error e (t) is given in Figure 2.2, and the closer view of e (t) is given in Figure

2.3, while the actual and desired joint positions are presented in Figure 2.4. The control

input torque is demonstrated in Figure 2.5 while the entries of the estimated weight matrix

are shown in Figure 2.6. From Figures 2.2 and 2.4, it is clear that the tracking control

objective was met.

Square of the integral of the norm of the tracking error (i.e.,
∫
‖e (ν)‖2 dν) and the

control input (i.e.,
∫
‖τ (ν)‖2 dν) were calculated and recorded as performance measures

and are presented in Table 2.1. From Table 2.1, it is observed that when the learning

component is removed a slightly more amount of control input yielded slightly more

tracking error. Secondly, removing the neural network component yielded more tracking
16
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Figure 2.2. Joint position tracking error e (t)

∫
‖e (v)‖2 dv

∫
‖τ (v)‖2 dv

The control input in (2.17) 167.8206 4371
Without ε̂ (t) 167.8176 4376

Without ϕ̂T (t)σ (t) 398.6327 4197

Table 2.1. Performance measures

error. The performance measure table demonstrates that neural network has compensated

for most of the modeling uncertainties and the learning component compensated for the

functional reconstruction error hence the design objective is met.

To observe the performance of the proposed controller on chattering–like prob-

lems, neural network component Ω̂ (t) of (2.17) is removed and learning gain component

was selected as k` = 10. Chattering–like problems are observed as in Figure 2.7 at the end

of the each update periods. Moreover, when learning gain was increased to k` = 23, while

other control gains remain constant, square of the integral of the norm of the tracking error

(i.e.,
∫
‖e (ν)‖2 dν) is obtained as 191.4154.
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Figure 2.3. A closer view of joint position tracking error e (t)

2.5. Experimental Results

Experiments were performed by utilizing the last two links (i.e., links 2 and 3)

of the in–house developed 3 degree of freedom planar robot manipulator shown in Figure

2.8. In the experiments, the desired joint positions given in (2.40) were utilized. The robot

manipulator was considered to be at rest with the initial joint position at q (0) = [0, 0]T

rad. The entries of the estimated weight matrix were initiated from zero while activation

function was chosen as hyperbolic tangent function. Similar to the numerical simulations,

the control gains were adjusted via trial and error and the gain of r (t) in (2.17) is consid-

ered to be constant and combined in Kr. Satisfactory tracking performance was obtained

when the control gains were chosen as Kr = 5, α = 2, kl = 0.05 and knn = 15.

The experiment results are given in Figures 2.9–2.13. The actual and desired joint

positions are presented in Figure 2.9 while the joint position tracking error e (t) is given

in Figure 2.10 and the closer view of joint position tracking error e (t) is given in Figure

2.11. The control input torque is demonstrated in Figure 2.12 while the entries of the

estimated weight matrix are shown in Figure 2.13. From Figures 2.9 and 2.10, it is clear

that the tracking control objective was met.
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Figure 2.4. Joint position q (t) and desired joint position qd (t)

2.6. Conclusions

In this chapter, repetitive learning controller fused with one–layer neural networks

was realized. Provided full state feedback is available (i.e., joint positions and velocity

measurements are available). In our design, it is considered that the dynamic model of

robot manipulator is not accurately known hence it cannot be utilized as a part of the con-

trol design. The convergence of the tracking position error is guaranteed via using Lya-

punov type tools, as a result, asymptotic stability of the joint position tracking error was

ensured. Numerical simulations and experimental results are presented to demonstrate

the performance of the proposed controller. It is important to note that the proposed con-

troller is globally model independent and thus, unlike the standard adaptive controllers,

does not require a regressor matrix to be obtained. Furthermore, different from standard

neural network controllers, which usually provide only ultimately bounded results, in this

thesis, asymptotic stability was ensured.
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Figure 2.5. Control input torque τ (t)
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Figure 2.6. Entries of the estimated weight matrix ϕ̂ (t)
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Figure 2.8. The 3 degree of freedom planar robot manipulator
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Figure 2.9. Joint position q (t) and desired joint position qd (t)
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Figure 2.10. Joint position tracking error e (t)
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Figure 2.11. A closer view of joint position tracking error e (t)
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Figure 2.13. Entries of the estimated weight matrix ϕ̂ (t)
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CHAPTER 3

JOINT SPACE LEARNING CONTROL: OUTPUT

FEEDBACK APPROACH

In this section, joint position tracking control problem of n degree of freedom

revolute joint robot manipulators is aimed in a specific case where the position measure-

ments are available for the control design, but the velocity measurements are not (i.e.,

only output feedback is available). Furthermore, the dynamic model of the robot manip-

ulator has parametric and/or unstructured uncertainties which do not allow it to be used

as part of the control design. The reference position vector is considered to be periodic

with a known period. To address these constraints, an output feedback neural network

based repetitive learning control strategy is preferred. Via the design of a dynamic model

independent velocity observer, the lack of velocity measurements is addressed. To com-

pensate for the lack of dynamic model knowledge, universal approximation property of

neural networks is utilized by designing an online adaptive update rule for the weight

matrix. The functional reconstruction error is dealt with the design of a novel repetitive

learning feedforward term. The outcome is a dynamic model independent output feedback

neural network based controller with a repetitive learning feedforward component. The

stability of the closed loop system is investigated via rigorous mathematical tools with

which semi–global asymptotic stability is ensured. Numerical simulations are performed

to demonstrate the performance of the designed controller.

3.1. System Model and Properties

The dynamic model 1 of an n degree of freedom revolute joint robot manipulator

is given in the following form (Dawson et al., 1995), (Nakanishi et al., 2008)

M (q) q̈ + C (q, q̇) q̇ +G (q) + Fdq̇ = τ, (3.1)

where q (t), q̇ (t), q̈ (t) ∈ Rn denote position, velocity, and acceleration vectors, respec-

tively, M(q) ∈ Rn×n is the inertia matrix, C (q, q̇) ∈ Rn×n models the centripetal–

1For the completeness and compactness of this chapter, some definitions and model properties are
repeated.
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Coriolis terms, G(q) ∈ Rn includes the gravitational effects, Fd ∈ Rn is the constant,

diagonal, positive–definite, viscous frictional effects, and τ (t) ∈ Rn is the control torque

input. The standard assumption that the left–hand side of (3.1) being first order differen-

tiable will be made use of along with the following properties all of which will later be

utilized in the controller design and in the accompanying stability analysis.

Property 1: The inertia matrix M (q) is positive–definite and symmetric and satisfies the

following inequalities (Lewis et al., 2003)

m1In ≤M (q) ≤ m2In (3.2)

with m1, m2 ∈ R being known positive bounding constants and In ∈ Rn×n being the

standard identity matrix. Likewise the inverse of M(q) can be bounded as

1

m2

In ≤M−1 (q) ≤ 1

m1

In. (3.3)

Property 2: Following skew–symmetry property is satisfied (Lewis et al., 2003)

ξT
(
Ṁ − 2C

)
ξ = 0 ∀ξ ∈ Rn. (3.4)

Property 3: The switching property of the centripetal–Coriolis matrix is satisfied (Lewis

et al., 2003)

C (q, υ) ξ = C (q, ξ) υ ∀υ, ξ ∈ Rn. (3.5)

Property 4: Following bounds are valid for the dynamic terms in (3.1) (Sadegh and

Horowitz, 1990), (Lewis et al., 2003)

‖M(ξ)−M(υ)‖i∞ ≤ ζm1 ‖ξ − υ‖ (3.6)∥∥M−1(ξ)−M−1(υ)
∥∥
i∞ ≤ ζm2 ‖ξ − υ‖ (3.7)

‖C (q, ξ)‖i∞ ≤ ζc1 ‖ξ‖ (3.8)

‖C(ξ, w)− C(υ, w)‖i∞ ≤ ζc2 ‖ξ − υ‖ ‖w‖ (3.9)

‖G(ξ)−G(υ)‖ ≤ ζg ‖ξ − υ‖ (3.10)

‖Fd‖i∞ ≤ ζf (3.11)

∀ξ, υ, w ∈ Rn, where ζm1, ζm2, ζc1, ζc2, ζg, ζf ∈ R are positive bounding constants.

The desired form of the robot manipulator system dynamics given in (3.1) can be

written as

Ωd ,M (qd) q̈d + C (qd, q̇d) q̇d +G (qd) + Fdq̇d, (3.12)

where Ωd (qd, q̇d, q̈d) ∈ Rn and qd (t), q̇d (t), q̈d (t) ∈ Rn denote respectively the desired

position, velocity and acceleration vectors.
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Property 5: Via utilizing the universal approximation property of neural networks (Kim

and Lewis, 1998), (Lewis et al., 1998), (Hornik et al., 1989), the term in (3.12) can be

written in the form

Ωd = φTσ + ε, (3.13)

where φ ∈ R3n×n is the constant weight matrix with bounded entries, σ (qd, q̇d, q̈d) ∈ R3n

is the activation function, and ε (qd, q̇d, q̈d) ∈ Rn is the functional reconstruction error. To

ease the notation, let xd ,
[
qTd q̇Td q̈Td

]T
∈ R3n. The entries of the functional

reconstruction error are bounded via |εi (xd)| ≤ ε̄i ∀i = 1, · · · , n with ε̄i being positive

constants.

3.2. Control Design and Error System Dynamics

The main aim of the controller design is to ensure tracking of a periodic desired

position vector satisfying qd(t) = qd(t − T ), q̇d(t) = q̇d(t − T ), q̈d(t) = q̈d(t − T ) for

a known period T . There are two constraints that should be dealt with. Firstly, different

from the full state feedback approach, previously examined in Chapter 2, in this case

only the position measurements are available while the velocity measurements are not.

Secondly, the terms in the robot manipulator dynamics are considered to be uncertain and

thus not to be utilized as part of neither the control input torque nor the velocity observer.

The tracking control objective is quantified via the definition of the position track-

ing error, denoted by e (t) ∈ Rn, as

e , qd − q. (3.14)

Let the velocity observation error, shown with ˙̃q (t) ∈ Rn, is defined as

˙̃q , q̇ − ˙̂q (3.15)

and the corresponding position observation error, shown with q̃ (t) ∈ Rn, being defined

in a similar manner as

q̃ , q − q̂ (3.16)

in which ˙̂q (t), q̂ (t) ∈ Rn denote respectively the observed velocity and the corresponding

observed position.

To ease the presentation of the rest of the design and analysis, a filtered version

of the tracking error, shown with r (t) ∈ Rn, and a filtered version of velocity observer,
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shown with s (t) ∈ Rn, are defined as

r , ė+ αe (3.17)

s , ˙̃q + αq̃ (3.18)

where α ∈ R is a positive constant control gain.

Motivated by the subsequently presented stability analysis, the velocity observer

is designed as

˙̂q = p+K0q̃ −Kce, (3.19)

ṗ = K1Sgn (q̃) +K2q̃ − αKce (3.20)

with p (t) ∈ Rn, K0, Kc, K1, K2 ∈ Rn×n being positive definite, diagonal gain matrices,

and Sgn(ς) =
[

sgn(ς1) · · · sgn(ςn)
]T
∈ Rn ∀ς ∈ Rn.

Also motivated by the subsequently presented stability analysis, the control input

torque τ (t) is designed as

τ = φ̂Tσ + ε̂+Kpe+Kcα (qd − q̂) +Kc

(
q̇d − ˙̂q

)
(3.21)

where Kp ∈ Rn×n is a positive definite, diagonal gain matrix, φ̂ (t) ∈ R3n×n is the

estimated weight matrix generated online via

φ̂ = knn

(
σ (t) eT (t)− σ (0) eT (0)−

∫ t

0

(σ̇ (ν)− ασ (ν)) eT (ν) dν

)
(3.22)

in which knn is a constant gain and the feedforward learning term ε̂ (t) ∈ Rn is obtained

from

ε̂ (t) = Satε̄ (ε̂ (t− T )) + klα (qd − q̂) + kl

(
q̇d − ˙̂q

)
(3.23)

where kl ∈ R is a positive constant gain, ε̄ ,
[
ε̄1 · · · ε̄n

]T
∈ Rn denotes the limits

of the vector saturation function Satε̄ (·) ∈ Rn whose entries are defined as

satε̄i (ε̂i) =

{
ε̄isgn (ε̂i) , |ε̂i| > ε̄i

ε̂i , |ε̂i| ≤ ε̄i
(3.24)

To ensure boundedness, a projection algorithm such as the one in (Krstic et al., 1995) is

considered to be utilized at the right hand side of (3.22). A flow chart of the proposed

control input is presented in Figure 3.1.

It is noted that

qd − q̂ = e+ q̃ (3.25)

q̇d − ˙̂q + α (qd − q̂) = r + s (3.26)
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using which the controller of (3.21) and the feedforward learning term of (3.23) are rewrit-

ten as

τ = φ̂Tσ + ε̂+Kpe+Kc (r + s) (3.27)

ε̂ (t) = Satε̄ (ε̂ (t− T )) + kl (r + s) . (3.28)

It is highlighted that the controller along with the feedforward learning term designed

above does not require velocity measurements but for the ease of the presentation in the

rest of the thesis, the formulations in (3.27) and (3.28) will be made use of rather than

their implementable versions.
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Figure 3.1. Flow chart for OFB Controller

3.2.1. Observer Error Dynamics

To obtain the observer error dynamics, the time derivative of (3.18) is taken first,

then (3.19), (3.27), (3.28) are inserted, afterwards K0 is designed as

K2 = α (K0 − αIn) (3.29)

and finally performing simplifications yields

ṡ = Nd +Nb −K1Sgn(q̃) +Kcr −
1

α
K2s (3.30)

in which Nd(q, qd, q̇d, q̈d, t) ∈ Rn and Nb(q, q̇, qd, q̇d, e, r, s, t) ∈ Rn are defined as

Nd , q̈d +M−1(q)
[
Satε̄ (ε̂ (t− T ))− ε (t) + φ̃Tσ

]
(3.31)

Nb ,
[
M−1(q)−M−1(qd)

]
M(qd)q̈d +M−1(q) [C(qd, q̇d)q̇d − C(q, q̇)q̇

+G(qd)−G(q) + Fdė+Kpe+ Kc(r + s) + kl(r + s)] . (3.32)
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Applying (3.3), (3.6)–(3.11) to Nd and Nb yields the following bounds

‖Nd‖ ≤ ζd (3.33)

‖Nb‖ ≤ ρ1 ‖e‖+ ρ2 ‖r‖+ ρ3 ‖s‖+ ρ4 ‖r‖2 (3.34)

where ζd, ρ1, ρ2, ρ3, ρ4 ∈ R are positive known bounding constants (Zergeroglu and

Tatlicioglu, 2010).

3.2.2. Tracking Error Dynamics

To obtain the tracking error dynamics, the time derivative of r (t) is taken first,

then pre–multiplied by M (q), and next (3.1), (3.14), (3.21) are utilized to obtain

Mṙ = −Cr + χ+ φ̃Tσ + ε̃−Kpe−Kc (r + s) (3.35)

in which ε̃ (t) , ε− ε̂ ∈ Rn, φ̃ (t) , φ− φ̂ ∈ R3n×n and χ(t) ∈ Rn is defined as

χ ,M (q̈d + αė) + C (q̇d + αe) +G+ Fdq̇ − Ωd (3.36)

which can be bounded as (Zergeroglu and Tatlicioglu, 2010)

‖χ(t)‖ ≤ (ζ1 + ζ2 ‖e‖) ‖e‖+ (ζ3 + ζ4 ‖e‖) ‖r‖ (3.37)

with ζ1, ζ2, ζ3, ζ4 ∈ R being known positive bounding constants.

3.3. Stability Analysis

In view of the closed loop error dynamics in (3.30) and (3.35), following theorem

is introduced to analyze the stability of position tracking error and velocity observation

error.

Theorem 3.3.1 The velocity observer in (3.19), (3.20) and the control law in (3.21) with

the feedforward learning term in (3.23) and the neural network weight update in (3.22)

guarantee the closed loop system to be semi–globally asymptotically stable in the sense

that

‖e(t)‖ ,
∥∥ ˙̃q(t)

∥∥→ 0 as t→ 0 (3.38)

provided that the observer gain is selected to satisfy (3.29), the controller gain Kp is

chosen to satisfy λmin{Kp} ≥ 1
α

, the controller gain Kc is designed as

Kc =
(
kdζ

2
1 + kdζ

2
2 + ζ3 + kdζ

2
4 + 1

)
In (3.39)
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and the observer gain K2 is designed as

K2 = α

(
kdρ

2
1 + kdρ

2
2 + ρ3 + kdρ

2
4 +

kl
2

+ 1

)
In (3.40)

where kd is a positive damping constant.

Proof The proof is conducted in four steps where in the first step a boundedness analysis

is performed whose result yields a lemma from which an inequality is obtained. After-

wards, this lemma is used to ensure non–negativeness of an integral term as part of the

convergence analysis.

Firstly, a non–negative function, denoted by Vb(y) ∈ R, is defined as

Vb ,
1

2
rTMr +

1

2
eTKpe+

1

2
sT s (3.41)

which is bounded as

λ1 ‖y‖2 ≤ Vb ≤ λ2 ‖y‖2 (3.42)

where y ,
[
eT rT sT

]T
, λ1 , 1

2
min{m1, λmin{Kp}, 1}, λ2 , 1

2
max{m2, λmax{Kp}

, 1} in which λmin{·} and λmax{·} denote respectively minimum and maximum eigenval-

ues of a matrix.

After taking the time derivative of Vb and substituting for (3.17), (3.30) and (3.35),

results in

V̇b = rT
[
−Cr + χ̃+ φ̃Tσ + ε̃−Kpe−Kc (r + s)

]
(3.43)

+
1

2
rTṀr + eTKp (r − αe)

+sT
[
Nd +Nb −K1Sgn(q̃) +Kcr −

1

α
K2s

]
from which, after canceling common terms, then substituting (3.28), making use of the

bounds in (3.33), (3.34), (3.37), bound of the functional reconstruction error in Prop-

erty 3.1, boundedness of the projection algorithm along with the fact that the outputs of

saturation and signum functions being bounded, then substituting (3.39) and (3.40), and

finally making use of the nonlinear damping argument in (Krstic et al., 1995), following

is obtained

V̇b ≤ −κ1Vb + κ2 (3.44)

where κ1 and κ2 are positive constants (with κ2 depending on the bounds of
∥∥∥φ̃Tσ∥∥∥,

‖Satε̄ (ε̂ (t− T ))‖ ≤ ‖ε̄‖, ‖ε (t)‖ ≤ ‖ε̄‖, ‖Nd (t)‖ ≤ ζd, ‖K1‖i∞ ≤ λmax{K1}). From

(3.41) and (3.44), Vb(y) ∈ L∞ and thus e(t), r(t), s(t) ∈ L∞. Linear signal chasing tools

can then be applied to show the boundedness of all the remaining signals under the closed

loop operation, including q̃(t) and ˙̃q(t).
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Following lemma of (Stepanyan and Kurdila, 2009) is essential for the next step

of the proof.

Lemma 3.3.2 Provided the boundedness of q̃ (t) and ˙̃q (t), following inequality can be

obtained for the upper bound of the integral of the absolute value of the ith entry of ˙̃q (t)

t∫
t0

∣∣ ˙̃qi (ν)
∣∣ dν ≤ γ1 + |q̃i (t)|+ γ2

t∫
t0

|q̃i (ν)| dν (3.45)

with γ1 and γ2 being positive constants.

Proof: The proof can be found in (Stepanyan and Kurdila, 2009).

Following lemma of (Bidikli et al., 2013) will be utilized in the convergence analysis part

of the proof.

Lemma 3.3.3 Provided the entries of the control gain matrixK1 are chosen to be greater

than the upper bound of the auxiliary term N̄d (t) , Nd + Satε̄ (ε̂ (t− T )) − ε (t) ∈ Rn,

following scalar term

P , ζp −
∫ t

0

sT (ν)
[
N̄d(ν)−K1Sgn(q̃(ν))

]
dν (3.46)

is non–negative where ζp is a positive constant.

Proof: The proof can be found in (Bidikli et al., 2013).

To analyze the convergence of the tracking error and the velocity observation error,

following non–negative function, denoted by Vc(t) ∈ R, is introduced

Vc , Vb + P +
1

2knn
tr{φ̃T φ̃}+

1

2kl

∫ t

t−T
‖Satε̄(ε(ν))− Satε̄(ε̂(ν))‖2dν. (3.47)

The time derivative of (3.47) is obtained as

V̇c =
1

2
rTṀr + rTMṙ + eTKpė+ sT ṡ− sT

[
N̄d −K1Sgn(q̃)

]
+

1

knn
tr{φ̃T ˙̃φ}

+
1

2kl
‖Satε̄(ε(t))− Satε̄(ε̂(t))‖2

− 1

2kl
‖Satε̄(ε(t− T ))− Satε̄(ε̂(t− T ))‖2 (3.48)

to which after substituting (3.17), the time derivative of (3.22), (3.30), (3.35), making use

of (3.3), and then canceling common terms yield

V̇c = rT
(
χ̃+ φ̃Tσ −Kcr

)
− αeTKpe+ sT

(
Nb −

1

α
K2s

)
− tr{φ̃TσrT}

+
1

2kl
‖Satε̄(ε(t))− Satε̄(ε̂(t))‖2 − 1

2kl
‖ε̃(t)‖2 + k` (r + s)T s

−k`
2
‖r + s‖2 (3.49)
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where Satε̄(ε(t−T ))−Satε̄(ε̂(t−T )) = ε̃(t) + k` (r + s) was utilized as well. Following

relationship of (Dixon et al., 2002) is essential for the rest of the convergence analysis

‖Satε̄(ε(t))− Satε̄(ε̂(t))‖2 − ‖ε̃‖2 ≤ 0. (3.50)

which is also available in Appendix A. Substituting (3.34), (3.37), (3.39), (3.40), then

making use of (3.50) and the property of trace operator that tr{φ̃TσrT} = rT φ̃Tσ along

with (3.49) yield

V̇c ≤ −αλmin{Kp} ‖e‖2 − ‖r‖2 − kl
2
‖r‖2 − ‖s‖2

+ζ1 ‖r‖ ‖e‖ − kdζ2
1 ‖r‖

2

+ζ2 ‖r‖ ‖e‖2 − kdζ2
2 ‖r‖

2

+ζ4 ‖r‖2 ‖e‖ − kdζ2
4 ‖r‖

2

+ρ1 ‖s‖ ‖e‖ − kdρ2
1 ‖s‖

2

+ρ2 ‖s‖ ‖r‖ − kdρ2
2 ‖s‖

2

+ρ4 ‖s‖ ‖r‖2 − kdρ2
4 ‖s‖

2 (3.51)

with which utilizing the nonlinear damping argument in (Kokotovic, 1992) gives

V̇c ≤ −αλmin{Kp} ‖e‖2 − ‖r‖2 − kl
2
‖r‖2 − ‖s‖2

+
1

4kd
‖e‖2 +

1

4kd
‖e‖4 +

1

4kd
‖e‖2 ‖r‖2

+
1

4kd
‖e‖2 +

1

4kd
‖r‖2 +

1

4kd
‖r‖4 (3.52)

from which it is possible to upper bound the right–hand side as

V̇c ≤ −
[
1− 1

2kd
− 1

2kd
‖y‖2

]
‖y‖2 ≤ −κ3‖y‖2 (3.53)

where κ3 ∈ R is some positive constant (0 < κ3 ≤ 1). Integrating (3.53) in time from

initial time to infinity gives that y (t) is square integrable. Since from the first part of

the proof boundedness of y (t) and its time derivative was guaranteed, then Barbalat’s

Lemma (Khalil, 2002) can be utilized to prove semi–global asymptotic convergence of

the velocity estimation error and the tracking error to the origin as in (3.38) .

3.4. Simulation Results

To illustrate the performance of the designed controller, a numerical simulation

was performed with the model of a two link planar robot manipulator. The dynamic model
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in (3.1) with additive disturbance term τd is considered with the following functions

M =

[
p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

]
(3.54)

C =

[
−p3s2q̇2 −p3s2 (q̇1 + q̇2)

p3s2q̇1 0

]
(3.55)

G =

[
0.5m1gl1c1 +m2g (l1c1 + 0.5l2c12)

0.5m2gl2c12

]
(3.56)

Fd =

[
5.3q̇1

1.1q̇2

]
(3.57)

τd = 0.1

[
sin (0.2πt)

cos (0.2πt)

]
(3.58)

in which c1 = cos(q1), s2 = sin(q2), c2 = cos(q2), c12 = cos (q1 + q2), and p1 = 3.473,

p2 = 0.193, p3 = 0.242, m1 = 3.6, m2 = 2.6, l1 = 0.4, l2 = 0.36, g = 9.8. We would

like to note that the above dynamic model terms are not utilized in the control design

when performing the numerical simulations.

The periodic desired joint space trajectory was selected as

qd =

[
0.3 + sin(0.2πt)

0.3 + sin(0.2πt)

]
. (3.59)

The robot manipulator is considered to be at rest with the initial joint position as q (0) =

[0.1, 0.1]T rad. Satisfactory tracking performance is obtained when the gains were set as

Kp = 20I2, Kc = 2I2, K0 = 100I2, K1 = 5I2, α = 0.1, knn = 100, kL = 0.01, and the

limits of the saturation function were chosen as ±1. Hyperbolic tangent function is used

for the activation function of the neural network. When choosing the gains, following

the linear system convention, the observer gains are chosen bigger to achieve velocity

observation first and then the control gains were chosen.

The results of the numerical simulation are presented in Figures 3.2–3.7. In Figure

3.2, the joint space tracking error e (t) is shown and the closer view of e (t) is given in

Figure 3.3. Position observation error q̃ (t) is presented in Figure 3.4. Control input

torque is given in Figure 3.5. From Figure 3.2, it is clear that the joint tracking objective

was successfully met and from Figure 3.4, the joint velocity observation objective was

successfully met. From Figure 3.2, it can be observed that the proposed repetitive learning

controller ensures an improvement on the joint space tracking error in every period of the

desired joint trajectory.
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Figure 3.2. Joint position tracking error e (t)

Additional numerical simulations were performed by removing the learning com-

ponent ε̂ (t) or the neural network component from the control input in (3.21). The track-

ing error and the velocity observation error were observed to be driven to zero. Square

of the integral of the norm of the tracking error (i.e.,
∫
‖e (ν)‖2 dν) and the control in-

put (i.e.,
∫
‖τ (ν)‖2 dν) were calculated and recorded as performance measures and are

presented in Table 3.1. From Table 3.1, it is observed that when the learning component

is removed a slightly more amount of control input yielded more tracking error while on

the other hand removing the neural network component yielded more tracking error. This

demonstrates that the design objective is met in the sense that neural network has com-

pensated for most of the modeling uncertainties and the learning component compensated

for the functional reconstruction error where in (Doğan, 2016) a bigger k` was required

as the learning component had to compensate for all the modeling uncertainties.

Table 3.1. Performance measures∫
‖e (ν)‖2 dν

∫
‖τ (ν)‖2 dν

The control input in (3.21) 56.93 31.17
Without ε̂ (t) 57.21 31.22

Without φ̂T (t)σ (t) 126.40 21.40
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Figure 3.3. A closer view of joint position tracking error e (t)

To observe the performance of the proposed controller on chattering–like prob-

lems, neural network component Ω̂ (t) of (3.27) is removed and learning gain component

k` = 5 has selected. Chattering–like problems are observed as in Figure 3.6 at the end of

the each update periods. Moreover, learning gain component has increased to k` = 200,

while other control gains remain constant, square of the integral of the norm of the track-

ing error (i.e.,
∫
‖e (ν)‖2 dν) is obtained as 76.9242.

3.5. Conclusions

In this chapter, output feedback repetitive learning controller which is fused with a

one layer neural network component was presented. In our control design, it is considered

that the dynamic model of robot manipulator is uncertain, as in full state feedback ap-

proach in Chapter 2, hence cannot be used as part of the control design. Moreover, as an-

other design restriction, the joint velocity measurements of robot manipulators were also

considered as unavailable, which makes our controller much more cost effective while

making the control design effort more complicated. To overcome this problem, a velocity

observer based output feedback neural network controller with a repetitive learning feed-

forward term was presented for tracking control of robot manipulator. The convergence of

the tracking error of the proposed controller was guaranteed via Lyapunov type stability
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Figure 3.4. Auxiliary position observation error q̃ (t)

analysis, and semi–global asymptotic tracking and velocity observation was ensured. Nu-

merical simulations in the presence of additive disturbance are presented to demonstrate

the performance of the proposed controller. Different from the dynamic model in (3.1),

robustness of the proposed control algorithm is tested by considering additive periodic

disturbances as well (see (3.58)).
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Figure 3.6. τ while k` = 5 without neural network component
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Figure 3.7. Entries of the estimated weight matrix ϕ̂ (t)
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CHAPTER 4

CONCLUSIONS AND FUTURE WORKS

Repetitive learning controllers fused with neural networks that can be utilized to

improve their performance is investigated. Especially, when the wide usage of robot

manipulator to perform pre–defined tasks, the task with a known period, is considered.

Since trying to linearly parameterize the dynamic model uncertainties may not be feasi-

ble, learning controllers have the advantage of learning dynamic model uncertainties as a

whole according to learning update rule.

In this thesis, neural networks are fused to improve the performance of the repet-

itive learning controllers. In the first part of the thesis, a neural network based repet-

itive learning controller was designed while the actuator model was considered to be

unavailable for the control design. Stability of the closed loop system was investigated

via Lyapunov type tools and asymptotic stability of the joint position tracking error was

guaranteed. Simulations and experiments were performed and the results demonstrated

the performance of the proposed controller.

A brief comparison of the proposed study with some of the similar works in the

literature will be explanatory at this point (see Table 4.1). When compared with the sat-

uration function based repetitive learning controller in Dixon et al. (2002), the proposed

controller includes a neural network compensation component which results in the feed-

back gain of the learning update rule to be reduced significantly. Furthermore, an adaptive

repetitive controller was also designed, the proposed controller is globally model inde-

pendent and thus does not require a regressor matrix to be obtained. On the other hand,

a comparison can be made with some of the neural network controllers in the literature.

With the standard neural network controllers, usually only an ultimately bounded result

can be obtained mostly because of the functional reconstruction error. An attempt to

obtain asymptotic stability with a neural network controller was presented in Kim et al.

(2000) where asymptotic stability was obtained for a variable structure controller. On the

other hand asymptotic stability was ensured in this work.

In the second part of this thesis, design of an output feedback form of the pro-

posed control which removes the need for joint velocity measurements is aimed. A ve-

locity observer based output feedback neural network controller with a repetitive learning

feedforward term was presented for tracking control of 3 DoF robot manipulator systems.
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Publications Required model Type of stability Learning

knowledge gains

(Dixon et al., 2002) Full state feedback Asymptotic stability Suffers from

high learning gain

(Lewis et al., 2003) Full state feedback Uniform ultimate –

NN controller boundedness

Proposed control Full state feedback Asymptotic stability Relatively

in Chapter 2 small learning gain

(Dogan et al., 2018) Output feedback Asymptotic stability Suffers from

high learning gain

Proposed control Output feedback Asymptotic stability Relatively

in Chapter 3 small learning gain

Table 4.1. Comparison table

Via a novel four–step Lyapunov type stability analysis, semi–global asymptotic tracking

and velocity observation was ensured. Note that the system equation considered in this

work does not contain additive disturbance terms. When external disturbance terms are

present, the proposed stability analysis would not be able to ensure asymptotic conver-

gence of the tracking error signal to zero, but at best, to an ultimate bound around the

origin. Future work will concentrate on the disturbance rejection properties of the pro-

posed controller. Additionally robustness to the mismatch in the period and dealing with

time varying period are also possible extensions to the proposed work.

There are several possible research avenues that may be considered for future

work. One line of future research will focus on rewriting the uncertain vector Ωd with

a two layer neural network model. The nonlinearity of the two layer neural networks

hindered the design of update rules for the weight matrices, thus, first future work will

be based on modeling the uncertain vector with two layer neural networks. Other line

of future work will focus on performing comparative simulations and experiments with

some of the closest works in the literature.

Although in this work tracking of a periodic reference position vector was pre-

sented in this work, other critical applications of the proposed control strategy are control

of active magnetic bearings, (Costic et al., 2000), and atomic force microscopy, (Fang

et al., 2005), where the control problem is to reject periodic disturbance type effects

(rather than following a periodic reference trajectory). It is our sincere belief that with

some effort the proposed strategy can be applicable to address these important research

problems.
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APPENDIX A

PROOF OF THE INEQUALITY IN (2.32)

Three possible cases of ε̂i (t) will be considered separately to prove the inequality

given in (2.32).

As first case, ε̄i ≥ |ε̂i (t)| is considered. So,

satε̄i(ε̂i (t)) = ε̂i (t) (A.1)

is obtained and from (2.13), ε̄i ≥ |εi (t)|, then

satε̄i(εi (t)) = εi (t) (A.2)

is obtained. From (A.1) and (A.2), it is clear that (2.32) is achieved with equality.

As second case, ε̂i (t) > ε̄i is considered. Since from (2.13), ε̄i ≥ εi (t), then

ε̂i (t) + ε̄i ≥ 2εi (t) (A.3)

can be obtained. Multiplying both sides of (A.3) with the positive term (ε̂i (t)− ε̄i) yields

ε̂2i (t)− ε̄2i ≥ 2εi (t) (ε̂i (t)− ε̄i). (A.4)

Adding ε2i (t) to both sides of (A.4) and then rearranging gives

ε2i (t)− 2εi (t) ε̂i (t) + ε̂2i (t) ≥ ε2i (t)− 2ε̄iεi (t) + ε̄2i (A.5)

which can be rearranged as

(εi (t)− ε̂i (t))2 ≥ (εi (t)− ε̄i)2 . (A.6)

Since satε̄i (ε̂i (t)) = ε̄i for this case and also recalling (A.2), the right hand sides of the

inequalities in (2.32) and (A.6) are same and thus (2.32) is achieved for this case.

As the final case, −ε̄i > ε̂i (t) is considered which can alternatively be considered

as the negation of the second case. Since from (2.13), εi (t) ≥ −ε̄i, then

ε̂i (t)− ε̄i ≤ 2εi (t) (A.7)

can be obtained. Multiplying both sides of (A.7) with the negative term (ε̂i (t) + ε̄i) causes

the direction of the inequality to be reversed and thus yields

ε̂2i (t)− ε̄2i ≥ 2εi (t) (ε̂i (t) + ε̄i). (A.8)
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Following the footsteps of the second case, ε2i (t) is added to both sides of (A.8) and then

rearranging gives

ε2i (t)− 2εi (t) ε̂i (t) + ε̂2i (t) ≥ ε2i (t) + 2εi (t) ε̄i + ε̄2i (A.9)

which can further be rearranged as

(εi (t)− ε̂i (t))2 ≥ (εi (t) + ε̄i)
2 . (A.10)

Since satε̄i (ε̂i (t)) = −ε̄i for this case and also recalling (A.2), the right hand sides of the

inequalities in (2.32) and (A.10) are same and thus (2.32) is achieved for this case too.

Having considered all possible cases, it is concluded that (2.32) is valid.

43



REFERENCES

Arimoto, S., S. Kawamura, and F. Miyazaki (1984). Bettering operation of robots by

learning. Journal of Robotic systems 1(2), 123–140.

Bidikli, B., E. Tatlicioglu, A. Bayrak, and E. Zergeroglu (2013). A new robust integral

of sign of error feedback controller with adaptive compensation gain. In IEEE

Conference on Decision and Control, Florence, Italy, pp. 3782–3787.

Bristow, D. A., M. Tharayil, and A. G. Alleyne (2006). A survey of iterative learning

control. IEEE Control Systems Magazine 26(3), 96–114.

Costic, B., M. De Queiroz, and D. Dawson (2000). A new learning control approach

to the active magnetic bearing benchmark system. In Chicago, IL, USA:

Proceedings of the American Control Conference, pp. 2639–2643.

Dawson, D. M., M. M. Bridges, and Z. Qu (1995). Nonlinear Control of Robotic

Systems for Environmental Waste and Restoration. Upper Saddle River, NJ, USA:

Prentice Hall.

Dawson, D. M., M. M. Bridges, Z. Qu, and M. Jamshidi (1995). Nonlinear control of

robotic systems for environmental waste and restoration. Englewood Cliffs, NJ,

USA: Prentice-Hall, Inc.

Dixon, W. E., E. Zergeroglu, D. M. Dawson, and B. T. Costic (2002). Repetitive

learning control: a lyapunov-based approach. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics) 32(4), 538–545.
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