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Abstract Modeling the dynamic of tool-tissue interaction for the robotic minimally
invasive surgeries is one of the main issues for designing appropriate robot con-
trollers. A mobile measurement device is produced in order to model some nasal tis-
sues of a human. This mobile device is a hand-held one which measures the applied
moments and relative angular displacements about a fixed pivot point. The ex-vivo
measurements are realized by surgeons on a relatively fresh human cadaver head.
The tip of the nose and the nasal concha are the two tissues that are investigated.
In this study, five different viscoelastic models are considered; Elastic, Kelvin-
Voight, Kelvin-Boltzmann, Maxwell and Hunt-Crossley. The results are evaluated
and cross-validated on each data set. Hunt-Crossley and Kelvin-Boltzmann models
provided the minimum root-mean-square (RMS) error among the other models.
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1 Introduction

In the past years, many open surgery procedures have been replaced by minimally
invasive surgeries (MIS) and in the past three decades, robots started to be included
in MIS. Introduction of robotics in MIS offered various benefits such as increased
dexterity, increased manipulation capability and repeatability. However, one critical
consideration in such procedures is the safety.

To avoid excessive contact force to the environment, the robotic surgical instru-
ment must behave compliantly.A pure position control is not sufficient to solve this
problem alone, hence, control of the dynamic interaction is also required [4]. An ac-
curate model of the surgical environment, which happens to a soft tissue most of the
case, can result in more precise and reliable controller design. Previously, a force
control method was proposed based on pure elastic interaction in [12]. However,
this assumption is not realistic for the biological tissues [3].
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In order to define the tool-tissue interaction relatively more accurately, re-
searchers have proposed several soft tissue models. These approaches can be clas-
sified as linear elasticity or nonlinear (hyperelastic) elasticity based finite element
methods (FEM), viscoelastic models, fractional models, and high order models [7].
These models can also be classified by their computational time and deformation
accuracy [9]. In the case of the diagnostic and scientific analysis of the tissue,
more precise FEM’s are suitable in spite of their longer computational time. Due
to real-time requirement, analytical models are commonly used in the robotic ap-
plications. A conventional way to represent the tissue dynamics is using combina-
tions of ideal damper and spring components. These models are comprehensively
studied and compared in literature and schematic representation of some of these
models are given in Fig. 1 along with their governing equations [10, 7, 6]. In the
equations F(¢) and x(¢) represent the applied force and the deformation of tissue,
respectively. f = X1k =2 and § = ﬁ are the linear combination of
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Fig. 1 Commonly used analytical models

The simplest model is a purely elastic model with single ideal spring model.
The Kelvin-Voight model is consist of a parallel connection of an ideal damper
and an ideal spring. On the other hand, the Maxwell model is composed of a se-
rial connection of an ideal spring and an ideal damper components. Serial com-
bination of elastic and the Kelvin-Voight models describes the Kelvin-Boltzmann
model. These models differ from each other by their ability to mimic tissue be-
haviors such as creep and relaxation. These are the two major phenomena of the
biological tissues [3]. While Maxwell model provides acceptable results for relax-
ation, Kelvin-Voight provides a good first order approximation of creep. On the
other hand, Kelvin-Boltzmann model provides a good approximation for both creep
and stress relaxation[7].

In [5], Hunt and Crossley presented that linear elastic models are not consistent
with physics of contact and they proposed a non-linear model which is represented
mathematically in eqn. 1.
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F(t) = k(1) + AX"(£)x(t) 1)

In this equation, n is positive scalar it ranges from 1.1 to 1.3 for a soft tissue.
[2, 10, 9]. Several studies have experimentally showed that Kelvin-Boltzmann and
Hunt-Crossley models provide relatively more realistic results with the lowest errors
with respect to the aforementioned viscoelastic models [9].

In order to identify soft tissue model parameters, several types of experiments
are performed in the literature. In most of these studies, a robotic system is used by
driving an end-effector in a controlled manner into the in-vitro specimen [8].

The work presented in this paper is conducted to model the nasal tissues to be
used in the design of an endoscopic pituitary tumor robotic surgery system. The
conceptual design is presented in Fig. 2. In this robotic system, the robot is used to
manipulate the endoscope inside the surgical area by rotating about a remote center
of motion, which is usually called the pivot. Therefore, the endoscope handled by
the robot is expected to interact with the nose tip and the nasal concha by making
rotational motion.

..
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Fig. 2 Conceptual design of the robotic pituitary gland surgery system

Since preparing in-vitro specimen for this specific surgery area is not straight-
forward, we designed a new mobile hand-held measurement device which gives
opportunity to acquire the necessary data in an ex-vivo set-up without the need of
a robotic interface. However, the surgeon’s hand motion cannot imitate a pure step
input. For this reason, the response of soft tissue under compression is considered
by moments applied on it for the evaluation instead of evaluating interaction mod-
els by their stress relaxation and creep behavior [11, 1]. The soft tissue modeling is
realized by using moment and angular displacement measurements due to the char-
acteristic of the surgery which is another novelty of the study. Measurements are
acquired from a relatively fresh human cadaver head in ex-vivo conditions.

In the next section, the proposed experimental set-up and test procedures are
explained. In section 3, obtained results are presented and we discuss the results in
the final section.
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2 Methodology

In order to acquire realistic data from the nasal tissue, a new mobile device is de-
signed. An ATI MINI45 (ATT Industrial Automation) force/torque (F/T) sensor is
used for the force and torque measurements and BNOO55 (BOSCH Sensortech) in-
ertial measurement unit (IMU) sensor is used to obtain angular displacements. Data
acquisition is realized via MATLAB/Simulink environment with 100 Hz sampling
rate. The components of the experimental set-up is presented in Fig. 3 indicating the
measurement axes for angular motion and moment measurements.

The moment measurements are highly sensitive to the orientation of the device
due to the weight of the F/T sensor. In order to eliminate gravitational forces, grav-
ity compensation algorithm is developed by acquiring the absolute orientation of
the device from the IMU sensor. These measurements also depend on the inertial
forces and angular acceleration. To obtain more precise results, in the measurement
process, the surgeons are asked to rotate the device at a constant velocity.

In order to imitate the real surgical scenario, a KARL STORZ telescope (28731
BWA Hopkins) is used and 3D printed holder is designed to provide better er-
gonomics for surgeons.

Pivot Point Holder L F/T
N\ ~ WSensor
/'/V
}\ AN 5
Telescope IMU

Fig. 3 CAD drawing of the proposed measurement device

Freshly frozen cadaver head is started to be thawed 48 hours beforehand to pre-
pare for the experiment. Thin section tomography images of the cadaver head are
taken with the Siemens Somamtom Perspective device during the thawing process.
When this procedure is completed and the tissues became closer to the live tissue
strength. The cadaver head is then fixed with a three-point head clamp (Mayfield,
Integra Life Sciences Co., NJ) and the measurement protocols are applied.

Two test procedures are defined to measure applied moment and angular position
data. In the first test, surgeons are asked to hold the device similar to the endoscope
and perform the rotational movement around the predefined pivot point and com-
press the tip of the nose with a constant velocity. The tip of the nose is the actual
pivot point in the endoscopic pituitary tumor surgery and the endoscope is expected
to be in contact with this point during the operation. In the second test, surgeons are
asked to rotate the device around the tip of the nose and compress the nasal concha
without interacting with pivot point (no force applied to the nose tip).

Parameter estimation process is realized as follows: (1) Each interaction model
is developed in Matlab Simulink by using angular position data and the resultant
moment is compared with the measured moment data to obtain the error in the
model. (2) The sum of the squares of error function is minimized by using fmincon
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function in Matlab. (3) The results are evaluated by using root-mean-square errors
(RMSE) and using the average of the estimated parameters’ cross-validation is re-
alized for each measurement.

3 Results

The procedure that is explained in the previous section is realized by three surgeons
that have carried out endoscopic pituitary tumor surgery. A total of nine experiments
carried out in order to eliminate measurement error. Four of these experiments are
performed to model the tip of the nose while the others were performed for the nasal
concha model.

Table 1 Identified Parameters for the Tip of the Nose Models)

Experiments

Models #1 #2 #3 #4
k| 0,455 | 1,208 | 0,860 | 1,363
Kelvin Boltzmann|k;| 0,135 | 0,375 | 0,273 | 0,149
16.270 | 28,457 | 24,695 | 25,105
0,102 | 0,276 | 0,202 | 0,239

Kelvin Voight 0209 | 0,115 | 0.448 | 0.593
Elastic 0.103 [ 0.277 [ 0202 | 0247
Maxwell

101,309(125,209{127,071{127,302
0,127 | 0,358 | 0,308 | 0,327
15,154 | 15,173 | 15,494 | 15,492

Hunt Crossley

b
k
b
k
k| 0,589 | 1,469 | 1,216 | 1,243
b
k
A

The measured position/torque values in the experiments are used to calculate
the parameters of soft tissue models. In each experiment, the maximum measured
torque is approximately 0.03 Nm.

Table 1 shows the identified parameters of the nose tip models for each experi-
ment where the unit of spring (k, k;, k2) and damper(b) parameters are Nm/rad and
Nm.s/rad, respectively. It is observed in Table 1 that the parameters are consistent
with each other.

Table 2 RMSE between Measured and Calculated Moments for the Nose Tip Models

RMSE (Nm)
Experiments
Models #1 #2 #3 #4

Kelvin Boltzmann|{0,0036|0,0056{0,0058|0,0051
Kelvin Voight {0,0036|0,0057|0,0059{0,0056
Elastic 0,0036(0,0056{0,0059|0,0058
Maxwell 0,00430,0069|0,0067(0,0056
Hunt Crossley [0,0046|0,0053|0,0060(0,0074

In addition, RMSE between measured torques and calculated ones are reported
in Table 2 and the minimum RMSE value received for the model of each experiment
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is highlighted with bold fonts. It is observed that the Kelvin-Boltzmann model re-
sulted in the minimal errors in experiments #1,#3, #4 and Hunt-Crossley model has
minimal error in experiment #2. Also, Kelvin-Voight and Elastic models resulted in
the same minimal error in experiment #1.

Table 3 RMSE between Measured and Calculated Force with Average Parameters of the Nose Tip
Models

Experiments
RMSE (Nm)
Models Avg. Coeff.| #1 #2 #3 #4

k| 0,972

Kelvin Boltzmann |k; 0,233 {0,0216(0,0165|0,0062 10,0111
b| 23,631

Kelvin Voight I; 8’?9& 0,0235(0,01560,0062 [0,0108

Elastic k| 0,207 0,0237(0,0155| 0,0062{0,0114
k 1,129

Maxwell bl 120223 0,0217(0,0135(0,0068 |0,0099
k| 0,280

Hunt Crossley Al 15328 0,0264(0,0132(0,0064 |0,0096

The average values of identified parameters of the models are calculated. The
soft tissue models with these new parameters are evaluated for each experiment for
cross-validation and the RMSE values are calculated as shown in Table 3. According
to these results, the minimum RMSE value is obtained when Kelvin-Boltzmann,
Kelvin Voight, and Elastic models are applied to experiment #3. Also, the Kevin-
Boltzmann has minimum RMSE value in experiment #1. In experiment #2 and #4,
Hunt-Crossley model has the best performance.

Table 4 Identified Parameters for the Nasal Concha Model

Experiments

Models #1 #2 #3 #4 #5
ky| 3,829 | 3,700 | 4,198 | 2,993 | 1,795
Kelvin Boltzmann|k;| 0,036 | 0,559 | 1,033 | 0,207 | 0,559

b 26,357 | 32,038 | 33,878 | 29,029 | 30,979

Kelvin Voight k| 0,575 | 0,675 | 0,844 | 0,419 | 0,358
b| 0,733 | 0,236 | 1,525 | 1,773 | 0,517

Elastic k| 0,600 | 0,679 | 0,856 | 0,440 | 0,370
Maxwell k| 2,928 | 3,440 | 5,833 | 2,545 | 2,632

b [137,166|136,950(139,842(136,699|138,644

Hunt Crossley k| 1,000 | 1,070 | 1,586 | 0,824 | 0,787
A| 15,038 | 14,990 | 15,10 | 15,117 | 15,535

Similar studies are carried out to model the nasal concha. Table 4 presents the
identified parameters and it is observed that the parameters are consistent with each
other. Also, RMSE values of each model are given in Table 5 and the minimum-
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error ones are highlighted by bold fonts. According to Table 5, Kelvin-Boltzmann
has the best performance in experiment #1, #2, #3 and #4. In experiment #5, the
minimum error is obtained when Hunt-Crossley model is applied.

Table 5 RMSE between Measured and Calculated Force for the Nasal Concha Models

RMSE (Nm)
Experiments
Models #1 #2 #3 #4 #5

Kelvin Boltzmann {0,0039(0,0048{0,0034(0,0024|0,0031
Kelvin Voight [0,0072{0,0068|0,0035{0,0033|0,0033
Elastic 0,0075{0,0068|0,0035|0,0036{0,0030
Maxwell 0,0068|0,0050]0,0050|0,0036{0,0059
Hunt Crossley |0,0128]0,0111{0,0049{0,0050|0,0029

To obtain an approximate tissue model for each experiment, the averages of the
models’ parameters are calculated and these values are used for each experiment for
cross-validation. The average parameters and the RMSE values for model validation
are presented in Table 6.

Table 6 RMSE between Measured and Obtained Force with Average Parameters of the Nasal
Concha Models

Experiments
RMSE (Nm)
Models Avg. Coeff.| #1 #2 #3 #4 #5

ky| 3,303

Kelvin Boltzmann |k; 0,479 0,0157 (0,0085(0,0128(0,0055|0,0080
b| 30,456
. . k| 0574

Kelvin Voight bl 0957 0,0198 {0,0114{0,0106{0,0064|0,0072

Elastic k{ 0,589 [0,0206]0,0110{0,0104|0,0066{0,0068
k| 3,476

Maxwell b| 137.860 0,033410,0111{0,0107{0,0083]0,0098
k 1,054

Hunt Crossley Al 15.158 0,0237{0,0050(0,01170,0068|0,0048

According to these values, Kevin-Boltzmann model has the best performance in
experiment #1 and #4. In experiment #2 and #5, the minimum error is observed
when Hunt-Crossley model is applied. In contrast to other experiments, the elastic
model has the best performance in experiment #3.

4 Discussions and Conclusions

In the endoscopic pituitary tumor surgery, the tip of nose and tissue of the nasal con-
cha mostly interacts with the endoscope. Since the results of this modeling study will
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be used in the design of a remote center of motion kinematics based robotic surgery,
this study investigated the behavior of tissues under rotational movement which is
different from the most of the works in literature. We proposed a new mobile mea-
surement device to acquire the torque/position data during the interactions with the
focused soft tissues of a cadaver in ex-vivo tests. In the experiments, three surgeons
are asked to apply torques to compress tissues with a constant angular velocity.

The soft tissues models for the nasal concha and the nose tip are obtained by
suing the experimental data. The results meet the expectations since the other studies
in the literature show that the Kelvin-Boltzmann and Hunt-Crossley models have
better performance relative to the others.

As a result, this study provides quantitative knowledge about the expected
torques during the operation and an accurate interaction model in order to design
a complaint controller as a future work.
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