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1. INTRODUCTION

Helicopters are versatile aerial vehicles that can perform
hover and vertical take–off and landing maneuvers. Due
to the aforementioned versatility, helicopters are useful for
both military and civilian applications, however the corre-
sponding flight dynamics are highly nonlinear and contains
uncertainties associated with the dynamical terms. In ad-
dition to these, strong coupling effects and natural insta-
bility of their system dynamics make the controller design
problem a challenging task. In general, the control system
of the unmanned helicopters can be divided into two parts;
namely as inner–loop level control and the outer–loop level
control. These parts are related with attitude and position
control, respectively. Since the position tracking can be
ensured via inner–loop control, designing a controller for
the attitude control of helicopters is considered as the main
control objective in this study.

Some examples from the previous work on attitude control
of helicopter systems in literature are given as follows;
in (Sakamato et al., 2006), Sakamato et al. designed a
PID controller for the linearized dynamics of the attitude
control of the helicopter while the other similar approaches
were realized with LQR control, output regulation and
feedback linearization in (Liu et al., 2013), (Nao et al.,
2003) and (Kagawa et al., 2005), respectively. Moreover,
H∞ control (Gadewadikar et al., 2008), (Kato et al.,
2003) and sliding mode control (Xian et al., 2015) are
other approaches for attitude control designs of linearized

dynamics. In (Suzuki et al., 2011), an adaptive attitude
controller for a small unmanned helicopter is designed by
using quartenion feedback provided by the backstepping
control method. In (Tee et al., 2008), a robust adaptive
neural network controller was presented for helicopters
in vertical flight, with dynamics in single–input–single–
output nonlinear nonaffine form. Because of highly uncer-
tain and nonlinear dynamics of helicopters robust control
design is another popular approach for the attitude control
of helicopters. In (Shin et al., 2010), a position tracking
control system was developed for a rotorcraft–based un-
manned aerial vehicle using robust integral of the signum
of the error feedback and neural network feedforward
terms. In (Liu et al., 2014), a nonlinear robust attitude
tracking control scheme was developed for a small–scaled
unmanned helicopter under input constraints. In addition
to these, neural network based control (Shin et al., 2012)
and fuzzy control (Kadmiry and Driankov, 2004) are other
approaches that were used for attitude control of heli-
copters.

In this work, the design and the corresponding stability
analysis for a novel robust controller for the attitude track-
ing control scheme for a small–scaled unmanned helicopter
has been presented. Our design is based on the actual
inputs namely the elevator servo input, the aileron servo
input and the rudder servo input. To express the effects of
these inputs on the system dynamics, rigid body and the
rotor dynamics are combined in the mathematical model
of the helicopter (Fantoni and Lozano, 2002). In the men-
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tioned mathematical model, input torque is expressed as
a function of actual inputs and the vector of actual inputs
is premultiplied with a non–symmetric input gain matrix
to obtain this expression. Designing a controller that is
based on actual inputs is a realistic approach and it can
be seen as a necessity for the applicability of the designed
controller. However the symmetric nature of the input gain
matrix is a critical case for the Lyapunov–based control
designs. Realizing a robust control design that can provide
the attitude control of a small–scaled unmanned helicopter
by taking into account the non–symmetric nature of the
input gain matrix is one of the most important aspects of
this study. The stability of the closed–loop error dynamics
of the designed controller is proven via Lyapunov–based
stability analysis. The performance of the designed con-
troller is then demonstrated via numerical simulations.

2. HELICOPTER MODEL

The dynamic model of a helicopter has the following
form(Fantoni and Lozano, 2002)

Mh (η) η̈ + Ch (η, η̇) η̇ +Gh (η) + fd (t) = τ (1)

where η = [ φ θ ψ ]
T

with φ (t), θ (t) and ψ (t) ∈ R
being the yaw, roll and pitch angles, is the position
vector and η̇ (t), η̈ (t) ∈ R3 are the first and second
order time derivatives of the position vector, respectively.
Mh (η) ∈ R3×3 is the inertia matrix, Ch (η, η̇) ∈ R3×3

is the matrix containing the Coriolis–centrifugal forces
and Gh (η) ∈ R3 is the vector of conservative forces. To
represent the unknown external disturbances that may be
effective on the helicopter, the term fd (t) ∈ R3 is added to
the dynamic model. The torque input vector is represented
by τ (t) ∈ R3. Also note that the inertia matrix denoted
by Mh (η) is symmetric and positive definite, and satisfies
the following inequalities (Liu et al., 2014)

m ‖ξ‖2 ≤ ξTMh (η) ξ ≤ m̄ ‖ξ‖2 ∀ξ ∈ R3 (2)

where m and m̄ ∈ R are positive bounding constants. The
torque input τ (t) is expressed as (Mettler, 2003), (Cai
et al., 2011)

τ = S−T
h (Aυc +B) (3)

where Sh (η) ∈ R3×3 denotes the velocity transformation
matrix from the body frame to the inertia frame and
defined as

Sh �

[
1 sφsθ/cθ cφsθ/cθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
(4)

where sφ, sθ, cφ and cθ denote sin (φ), sin (θ), cos (φ) and
cos (θ), respectively. At this point it should be noted that
cos (θ) term used as denominator for some terms of this
matrix does not cause indefiniteness of these terms because
of the possible interval of θ. More detailed explanations
about the possible intervals of yaw, roll and pitch angles
an other model parameters can be found in modeling
studies (Fantoni and Lozano, 2002), (Mettler, 2003) and
(Cai et al., 2011). In (3), υc (t) ∈ R3 is a vector that is

expressed as υc = [ a b TT ]
T
where a (t), b (t) ∈ R are the

flapping angles and TT (t) ∈ R is the tail rotor thrust. In
addition to these, A ∈ R3×3 and B ∈ R3 are a constant
invertible matrix and a constant vector, respectively. A
simplified model for flapping angles and tail rotor thrust at
hovering flight condition can be expressed as in (Mettler,
2003)

a=Abb−Alonδlon

b=−Baa+Blatδlat

TT =Kped0δped (5)

where Ab, Alon, Ba, Blat and Kped0 ∈ R are constant
parameters that are related with the helicopter dynamics

and δ = [ δlon δlat δped ]
T
denotes the actual control input

that contains the elevator servo input δlon (t), the aileron
servo input δlat (t) and the rudder servo input δped (t). As
a result, a simplified rotor model can be expressed as

τ = S−T
h (ACδδ +B) (6)

where the constant matrix Cδ ∈ R3×3 is defined as

Cδ =




− Alon

AbBa + 1

AbBlat

AbBa + 1
0

Blat

AbBa + 1

BaAlon

AbBa + 1
0

0 0 Kped0


 (7)

In view of (6), the dynamic model given in (1) can be
re–arranged as follows

η̈ = h+ gδ (8)

where h (η, η̇) ∈ R3 and g (η) ∈ R3×3 are defined as

h�M−1
h

(
S−T
h B − Chη̇ −Gh−fd

)
(9)

g �M−1
h S−T

h ACδ (10)

We also would like to note that the uncertain functions
h and g are assumed to be at least second–order differen-
tiable (i.e., h, g ∈ C2) in the rest of analysis.

3. MATHEMATICAL DESCRIPTION OF THE
PROBLEM

Based on the assumption that g being a real valued matrix
with non–zero leading principal minors, the following
matrix decomposition is utilized (Costa et al., 2003),
(Morse, 1993)

g = S(η)DU(η) (11)

where S (η) ∈ R3×3 is a symmetric positive definite matrix,
D ∈ R3×3 is a diagonal matrix with entries being ±1, and
U (η) ∈ R3×3 is a unity upper triangular matrix. Similar to
(Costa et al., 2003) and (Chen et al., 2008), it is assumed
that D is available for control design.

Remark 1. As it is explained in a detailed manner in
(Fantoni and Lozano, 2002), g becomes a non–symmetric
input gain matrix for the helicopter model studied in this
paper. The significance of this non–symmetric nature may
cause reduction in performance and even instability for the
Lyapunov–based control designs when not appropriately
dealt with. At this point it should be noted that by only
using the availability of D in it, an independent structure
from the uncertain function g is obtained for the control
design and the mentioned non–symmetry is appropriately
dealt with. This situation can be seen as an another
advantageous aspect of this control design.

Taking the time derivative of the system model in (8)
yields

...
η = ḣ+ ġg−1 (η̈ − h) + SDUδ̇ (12)

where (11) was also utilized. Multiplying both sides of (12)

with M (η) � S−1 ∈ R3×3 results

M
...
η = f +DUδ̇. (13)
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with f (η, η̇, η̈) � M
(
ḣ+ ġg−1 (η̈ − h)

)
∈ R3.

4. ERROR SYSTEM DEVELOPMENT

The main control objective is to ensure that the system
output η (t) tracks a sufficiently smooth reference tra-
jectory while ensuring all signals within the closed–loop
system remain bounded. In order to quantify the tracking
control objective, the tracking error signal, e1 (t) ∈ R3, is
defined to have the following form

e1 � ηr − η (14)

where ηr (t) ∈ R3 is the reference trajectory satisfying

ηr (t) ∈ C3 and ηr (t) , η̇r (t) , η̈r (t) ∈ L∞. (15)

In the controller development, it will be assumed that the
system states η (t) and η̇ (t) are available.

To facilitate the control design, an auxiliary error, denoted
by e2 (t) ∈ R3 is defined in the following form

e2 � ė1 + e1. (16)

Also a filtered error like term r (t) ∈ R3 is defined to have
the following form

r � ė2 + αe2 (17)

where α ∈ R3×3 is a constant positive definite, diagonal,
gain matrix. Simplifying the presentation of the stability
analysis by eliminating higher order time derivatives from
it is the main purpose of the definition of filtered error like
term. It should be noted that, since ė2 (t) is unavailable,
then r (t) is also unavailable for control design. It should
further be noted that the auxiliary error signals in (16) and
(17) are introduced to obtain a stability analysis where
only first order time derivatives are utilized. After differ-
entiating (17) and pre–multiplying the resulting equation
with M (η), the following expression can be derived

Mṙ = M (
...
η r + ë1 + αė2)− f −DUδ̇ (18)

where (13), (14) and (16) were utilized. After defining an
auxiliary function, N (η, η̇, η̈, t) ∈ R3, as

N � M (
...
η r + ë1 + αė2)− f + e2 +

1

2
Ṁr (19)

the expression in (18) can be reformulated to have the
following form

Mṙ = −1

2
Ṁr − e2 −DUδ̇ +N. (20)

Furthermore, the filtered error dynamics in (20) can be
rearranged as

Mṙ = −1

2
Ṁr − e2 −D (U − I3) δ̇ −Dδ̇ + Ñ + N̄ (21)

where Dδ̇ (t) were added and subtracted to the right–hand
side, I3 ∈ R3×3 is the standard identity matrix, and N̄ (t),

Ñ (t) ∈ R3 are auxiliary functions defined as follows

N̄ � N |η=ηr,η̇=η̇r,η̈=η̈r
(22)

Ñ �N − N̄ . (23)

The main idea behind adding and subtracting Dδ̇ (t) term
to the right–hand side of (21) is to make use of the fact
that U (η) is unity upper triangular, and thus (U − I3) is
strictly upper triangular.

5. CONTROLLER DESIGN

Based on the open–loop error system in (21) and the
subsequent stability analysis the control input δ (t) is
designed as

δ = DK

[
e2 (t)− e2 (t0) + α

∫ t

t0

e2 (σ) dσ

]
+DΠ (24)

where the auxiliary signal Π (t) ∈ R3 is generated accord-
ing to the following equation

Π̇ = βSgn (e2) ,Π(t0) = 03. (25)

In (24) and (25), K, β ∈ R3×3 are constant, diagonal,
positive definite, gain matrices, 03 ∈ R3 is a vector of zeros
and Sgn(·) ∈ R3 is the vector signum function. Notice that
δ (t) depend on η (t), η̇ (t) and not η̈ (t). The control gain
matrix K is chosen as K = I3 + kpI3 + diag {kd,1, kd,2, 0}
where kp, kd,1 and kd,2 ∈ R are constant, positive, control
gains, and diag {·} is used to represent the entries of
a diagonal matrix. Finally, the closed–loop error system
for r (t) is obtained as follows by substituting the time
derivative of (24) into (21)

Mṙ =− 1

2
Ṁr − e2 −Kr + Ñ + N̄

−D (U − I3)DKr −DUDβSgn (e2) (26)

where (17), (25) and the fact that DD = I3 was utilized.

Before proceeding with the stability analysis, we would
like to draw attention to the last two terms of (26) which
will be investigated separately.

Note that, after utilizing the fact that (U − I3) being
strictly upper triangular, the term D (U − I3)DKr is
rewritten as

D (U − I3)DKr =

[
Λ + Φ

0

]
(27)

where Λ (t), Φ (t) ∈ R2 are auxiliary functions with their
entries Λi (t), Φi (t) ∈ R, i = 1, 2, being upper bounded as

|Λi| ≤
3∑

j=i+1

kjρi,j (‖z‖) ‖z‖ |rj | ≤ ρΛi (‖z‖) ‖z‖ (28)

|Φi| ≤
3∑

j=i+1

kjζŪi,j
|rj | ≤ ζΦi

‖z‖ . (29)

The DUDβSgn (e2) term is rewritten as

DUDβSgn (e2) =

[
Ψ
0

]
+Θ (30)

where Ψ (t) ∈ R2 and Θ (t) ∈ R3 are auxiliary functions
defined as

[
Ψ
0

]
=D

(
U − Ū

)
DβSgn (e2) (31)

Θ=DŪDβSgn (e2) (32)

where Ū (ηr) � U |η=ηr ∈ R3×3 is a function of reference
trajectory. The terms Ψi (t) ∈ R, i = 1, 2 and Θi (t) ∈ R,
i = 1, 2, 3, are upper bounded as
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with f (η, η̇, η̈) � M
(
ḣ+ ġg−1 (η̈ − h)

)
∈ R3.

4. ERROR SYSTEM DEVELOPMENT

The main control objective is to ensure that the system
output η (t) tracks a sufficiently smooth reference tra-
jectory while ensuring all signals within the closed–loop
system remain bounded. In order to quantify the tracking
control objective, the tracking error signal, e1 (t) ∈ R3, is
defined to have the following form

e1 � ηr − η (14)

where ηr (t) ∈ R3 is the reference trajectory satisfying

ηr (t) ∈ C3 and ηr (t) , η̇r (t) , η̈r (t) ∈ L∞. (15)

In the controller development, it will be assumed that the
system states η (t) and η̇ (t) are available.

To facilitate the control design, an auxiliary error, denoted
by e2 (t) ∈ R3 is defined in the following form

e2 � ė1 + e1. (16)

Also a filtered error like term r (t) ∈ R3 is defined to have
the following form

r � ė2 + αe2 (17)

where α ∈ R3×3 is a constant positive definite, diagonal,
gain matrix. Simplifying the presentation of the stability
analysis by eliminating higher order time derivatives from
it is the main purpose of the definition of filtered error like
term. It should be noted that, since ė2 (t) is unavailable,
then r (t) is also unavailable for control design. It should
further be noted that the auxiliary error signals in (16) and
(17) are introduced to obtain a stability analysis where
only first order time derivatives are utilized. After differ-
entiating (17) and pre–multiplying the resulting equation
with M (η), the following expression can be derived

Mṙ = M (
...
η r + ë1 + αė2)− f −DUδ̇ (18)

where (13), (14) and (16) were utilized. After defining an
auxiliary function, N (η, η̇, η̈, t) ∈ R3, as

N � M (
...
η r + ë1 + αė2)− f + e2 +

1

2
Ṁr (19)

the expression in (18) can be reformulated to have the
following form

Mṙ = −1

2
Ṁr − e2 −DUδ̇ +N. (20)

Furthermore, the filtered error dynamics in (20) can be
rearranged as

Mṙ = −1

2
Ṁr − e2 −D (U − I3) δ̇ −Dδ̇ + Ñ + N̄ (21)

where Dδ̇ (t) were added and subtracted to the right–hand
side, I3 ∈ R3×3 is the standard identity matrix, and N̄ (t),

Ñ (t) ∈ R3 are auxiliary functions defined as follows

N̄ � N |η=ηr,η̇=η̇r,η̈=η̈r
(22)

Ñ �N − N̄ . (23)

The main idea behind adding and subtracting Dδ̇ (t) term
to the right–hand side of (21) is to make use of the fact
that U (η) is unity upper triangular, and thus (U − I3) is
strictly upper triangular.

5. CONTROLLER DESIGN

Based on the open–loop error system in (21) and the
subsequent stability analysis the control input δ (t) is
designed as

δ = DK

[
e2 (t)− e2 (t0) + α

∫ t

t0

e2 (σ) dσ

]
+DΠ (24)

where the auxiliary signal Π (t) ∈ R3 is generated accord-
ing to the following equation

Π̇ = βSgn (e2) ,Π(t0) = 03. (25)

In (24) and (25), K, β ∈ R3×3 are constant, diagonal,
positive definite, gain matrices, 03 ∈ R3 is a vector of zeros
and Sgn(·) ∈ R3 is the vector signum function. Notice that
δ (t) depend on η (t), η̇ (t) and not η̈ (t). The control gain
matrix K is chosen as K = I3 + kpI3 + diag {kd,1, kd,2, 0}
where kp, kd,1 and kd,2 ∈ R are constant, positive, control
gains, and diag {·} is used to represent the entries of
a diagonal matrix. Finally, the closed–loop error system
for r (t) is obtained as follows by substituting the time
derivative of (24) into (21)

Mṙ =− 1

2
Ṁr − e2 −Kr + Ñ + N̄

−D (U − I3)DKr −DUDβSgn (e2) (26)

where (17), (25) and the fact that DD = I3 was utilized.

Before proceeding with the stability analysis, we would
like to draw attention to the last two terms of (26) which
will be investigated separately.

Note that, after utilizing the fact that (U − I3) being
strictly upper triangular, the term D (U − I3)DKr is
rewritten as

D (U − I3)DKr =

[
Λ + Φ

0

]
(27)

where Λ (t), Φ (t) ∈ R2 are auxiliary functions with their
entries Λi (t), Φi (t) ∈ R, i = 1, 2, being upper bounded as

|Λi| ≤
3∑

j=i+1

kjρi,j (‖z‖) ‖z‖ |rj | ≤ ρΛi (‖z‖) ‖z‖ (28)

|Φi| ≤
3∑

j=i+1

kjζŪi,j
|rj | ≤ ζΦi

‖z‖ . (29)

The DUDβSgn (e2) term is rewritten as

DUDβSgn (e2) =

[
Ψ
0

]
+Θ (30)

where Ψ (t) ∈ R2 and Θ (t) ∈ R3 are auxiliary functions
defined as

[
Ψ
0

]
=D

(
U − Ū

)
DβSgn (e2) (31)

Θ=DŪDβSgn (e2) (32)

where Ū (ηr) � U |η=ηr ∈ R3×3 is a function of reference
trajectory. The terms Ψi (t) ∈ R, i = 1, 2 and Θi (t) ∈ R,
i = 1, 2, 3, are upper bounded as
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|Ψi| ≤
3∑

j=i+1

βjρi,j (‖z‖) ‖z‖ ≤ ρΨi
(‖z‖) ‖z‖ (33)

|Θi| ≤
3∑

j=i

βjζŪi,j
≤ ζΘi

(34)

The Mean Value Theorem in (Khalil, 2002) can be utilized
to develop the following upper bounds

∥∥∥Ñ (t)
∥∥∥≤ ρ

Ñ
(‖z‖) ‖z‖ (35)

∥∥∥Ũi,j (t)
∥∥∥≤ ρi,j (‖z‖) ‖z‖ (36)

where ρ
Ñ
(·), ρi,j (·) ∈ R are non–negative, globally in-

vertible, non–decreasing functions of their arguments, and
z (t) ∈ R9 is defined by

z �
[
eT1 eT2 rT

]T
. (37)

It can be seen from (15), (19), (22) that N̄ (t) and Ūi,j (t)
are bounded in the sense that

∣∣N̄i (t)
∣∣≤ ζN̄i

(38)∣∣Ūi,j (t)
∣∣≤ ζŪi,j

(39)

∀t where ζN̄i
, ζŪi,j

∈ R are positive bounding constants.

From (34), it is easy to see that ‖Θ(t)‖ ≤ ζΘ ∀t is
satisfied for some positive bounding constant ζΘ ∈ R, and
from (28), (29) and (33), the following inequality can be
obtained

|Λi|+ |Φi|+ |Ψi| ≤ ρi (‖z‖) ‖z‖ (40)

where ρi (‖z‖) ∈ R i = 0, 1, 2, are non–negative, globally
invertible, non–decreasing functions satisfying

ρΛi
+ ρΨi

+ ζΦi
≤ ρi. (41)

As a result of the fact that Ū (t) being unity upper
triangular, Θ (t) in (32) can be rewritten as

Θ = (I3 +Ω)βSgn (e2) (42)

where Ω (t) � D
(
Ū − I3

)
D ∈ R3×3 is a strictly upper

triangular matrix. Since it is a function of the reference
trajectory and its time derivatives, its entries, denoted by
Ωi,j (t) ∈ R, are bounded in the sense that

|Ωi,j (t)| ≤ ζΩi,j ∀t (43)

where ζΩi,j ∈ R are positive bounding constants.

At this point, we are now ready to continue with the
stability analysis of the proposed robust controller.

6. STABILITY ANALYSIS

In this section, first the boundedness of the error signals
will be proven under the closed–loop operation by utilizing
an initial Lyapunov based analysis. Then a lemma will
be presented and an upper bound for the integral of the
absolute values of the entries of ė2 (t) will be obtained
by using this result. This upper bound will later be
utilized in another lemma to prove the non–negativity of
a Lyapunov–like function that will be used in the final
analysis which proves asymptotic stability of the tracking
error.

Theorem 1. For the dynamic model given in (8), the
controller in (24) and (25) guarantees the boundedness
of all the closed–loop signals including the error signals
in (14), (16) and (17) provided that the control gains kd,i
and kp are chosen large enough compared to the initial
conditions of the system and the following condition is
satisfied

λmin (α) ≥
1

2
(44)

where the notation λmin (α) denotes the minimum eigen-
value of the gain matrix α, previously introduced in (17).

Proof 1. The non–negative function V1 (z) ∈ R is defined
as

V1 �
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rTMr. (45)

By utilizing (2), (45) can be bounded in the following
manner

1

2
min {1,m} ‖z‖2 ≤ V1 (z) ≤

1

2
max {1, m̄} ‖z‖2 , (46)

where z(t) was defined in (37), and the terms m , m̄ were
defined in (2). The time derivative of (45) can be upper
bounded as

V̇1 ≤ −

(
λ1 −

ρ2
Ñ
(‖z‖)
4kp

−
2∑

i=1

ρ2i (‖z‖)
4kd,i

)
‖z‖2+δhε

2 (47)

where λ1 � min
{

1
2 , λmin (α)− 1

2 , 1−
1

4δh

}
, δh ∈ R is a

positive bounding constant, ε � ζN̄ + ζΘ, and ε ‖r‖ ≤
1

4δh
‖r‖2 + δhε

2 was utilized. Provided that the controller

gains kd,i and kp are selected sufficiently large [larger than
functions of the initial values of the norm of z (t)], it can be
ensured that the terms presented in parenthesis in (47) are
always positive, and utilizing (46), the following inequality
can be obtained

V̇1 ≤ −βg1V1 + δhε
2 (48)

where βg1 ∈ R is a positive constant. From (45), and
(48), it can be concluded that V1 (t) ∈ L∞, therefore
e1 (t), e2 (t), and r (t) are uniformly ultimately bounded.
Standard signal chasing arguments can then be utilized
to prove that all the signals remain bounded under the
closed–loop operation.

Lemma 1. Provided that e2 (t) and ė2 (t) are bounded,
the integral of the absolute value of the ith entry of
ė2 (t), i = 1, 2, 3, can be upper bounded by using a term
expressed in terms of the ith entry of e2 (t), i = 1, 2, 3.

Proof 2. The proof is similar to that of the one given in
(Stepanyan and Kurdila, 2009).

Lemma 2. Consider the term

L � rT
(
N̄ − (I3 +Ω)βSgn (e2)

)
(49)

where Ω (t) introduced in (42) is a strictly upper triangular
matrix that is a function of reference trajectory and
its time derivatives. The integral of (49) can be upper
bounded as follows by utilizing the appropriate selection
of the entries of the control gain β

t∫

t0

L (σ) dσ ≤ ζL (50)

where ζL ∈ R is a positive bounding constant.

Proof 3. It can be obtained from Appendix 2 of (Bidikli
et al., 2016) by putting 2 and 3 instead of n and m,
respectively.
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Theorem 2. Given the dynamic model of the helicopter of
the form (8), the controller of (24) and (25) ensures that
the tracking error and its time derivatives converge to zero
asymptotically in the sense that∥∥∥e(i)1 (t)

∥∥∥ → 0 as t → +∞ , ∀i = 0, 1, 2

provided that α is chosen to satisfy (44), the entries of β
are chosen appropriately, and kd,i and kp are chosen large
enough compared to the initial conditions of the system.

Proof 4. It can be obtained from the proof of Theorem 4.1
of (Bidikli et al., 2016) by putting 2 and 3 instead of n and
m, respectively.

7. NUMERICAL SIMULATION RESULTS

We utilized a numerical simulation to substantiate the
performance of the designed robust controller. All system
parameters are obtained from the results at (Fantoni and
Lozano, 2002), (Mettler, 2003) and (Cai et al., 2011). The
mathematical model of the helicopter in (1) was utilized
with the inertia matrix that have following form

M =

[
c0 0 0
0 c1 + c2 cos (c3ψ) c4
0 c4 c5

]

The Coriolis–centrifugal forces matrix and vector of con-
servative forces have the following forms

C =



0 0 0

0 c6 sin (2c3ψ) ψ̇ c6 sin (2c3ψ) θ̇

0 −c6 sin (2c3ψ) θ̇ 0


 ,

G= [ c7 cos (φ) 0 0 ]
T
.

The constant parameters were

c0 = 7.5, c1 = 0.4305, c2 = 3× 10−4, c3 = −4.143,

c4 = 0.108, c5 = 0.4993, c6 = 6.214× 10−4, c7 = −73.58.

The simplified rotor dynamics in (6) are given as

A =




c8ψ̇
2 0 0

0 c11ψ̇
2 0

c12ψ̇ + c13 0 c15ψ̇
2


 , B =




c9ψ̇ + c10
0

c14ψ̇
2 + c15




with the constant parameters that are given as

c8 = 3.411, c9 = 0.6004, c10 = 3.679, c11 = −0.1525,

c12 = 12.01, c13 = 105, c14 = 1.204× 10−4, c15 = −2.642.

The other parameters were used with their following
numerical values

Alon =−0.1, Alat = 0.0313, Ab = −0.189

Blon = 0.0138, Blat = 0.14, Ba = 0.368

Kped = 2.16.

The unknown external disturbance term fd was modeled
as

fd (t) =

[
fdc11 + fdc12 sin (10t)
fdc21 + fdc22 sin (10t)
fdc31 + fdc32 sin (10t)

]
(deg) (51)

where the constant coefficients fdc11, fdc12, fdc21, fdc22,
fdc31 and fdc32 were randomly selected from the interval
(0, 1]. Moreover, the additive zero mean white noise with

50 dB signal–to–noise ratio was added to position and
velocity sensors to obtain a more realistic approach by
modeling noise of sensors. The reference position ηr (t) was
selected as

ηr(t) = [ 10 sin(0.1t) 15 sin(0.1t) 20 sin(0.1t) ]
T

(deg).

To ease the gain tuning by getting rid of all bounding con-
ditions about control gains and system uncertainties, the
self–tuning algorithm in (Bidikli et al., 2013) and (Bidikli
et al., 2014) was utilized after choosing α = I3 that yielded
K = diag{2.8, 1.3, 4.75} and β = diag{3.6, 1.5, 4.2}.
The actual and reference positions are shown in Figure 1,
while the position tracking errors and the control inputs
are shown in Figures 2 and 3, respectively. Simulation
results confirm that the proposed controller meets the
tracking objective.
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Theorem 2. Given the dynamic model of the helicopter of
the form (8), the controller of (24) and (25) ensures that
the tracking error and its time derivatives converge to zero
asymptotically in the sense that∥∥∥e(i)1 (t)

∥∥∥ → 0 as t → +∞ , ∀i = 0, 1, 2

provided that α is chosen to satisfy (44), the entries of β
are chosen appropriately, and kd,i and kp are chosen large
enough compared to the initial conditions of the system.

Proof 4. It can be obtained from the proof of Theorem 4.1
of (Bidikli et al., 2016) by putting 2 and 3 instead of n and
m, respectively.

7. NUMERICAL SIMULATION RESULTS

We utilized a numerical simulation to substantiate the
performance of the designed robust controller. All system
parameters are obtained from the results at (Fantoni and
Lozano, 2002), (Mettler, 2003) and (Cai et al., 2011). The
mathematical model of the helicopter in (1) was utilized
with the inertia matrix that have following form

M =

[
c0 0 0
0 c1 + c2 cos (c3ψ) c4
0 c4 c5

]

The Coriolis–centrifugal forces matrix and vector of con-
servative forces have the following forms

C =



0 0 0

0 c6 sin (2c3ψ) ψ̇ c6 sin (2c3ψ) θ̇

0 −c6 sin (2c3ψ) θ̇ 0


 ,

G= [ c7 cos (φ) 0 0 ]
T
.

The constant parameters were

c0 = 7.5, c1 = 0.4305, c2 = 3× 10−4, c3 = −4.143,

c4 = 0.108, c5 = 0.4993, c6 = 6.214× 10−4, c7 = −73.58.

The simplified rotor dynamics in (6) are given as

A =




c8ψ̇
2 0 0

0 c11ψ̇
2 0

c12ψ̇ + c13 0 c15ψ̇
2


 , B =




c9ψ̇ + c10
0

c14ψ̇
2 + c15




with the constant parameters that are given as

c8 = 3.411, c9 = 0.6004, c10 = 3.679, c11 = −0.1525,

c12 = 12.01, c13 = 105, c14 = 1.204× 10−4, c15 = −2.642.

The other parameters were used with their following
numerical values

Alon =−0.1, Alat = 0.0313, Ab = −0.189

Blon = 0.0138, Blat = 0.14, Ba = 0.368

Kped = 2.16.

The unknown external disturbance term fd was modeled
as

fd (t) =

[
fdc11 + fdc12 sin (10t)
fdc21 + fdc22 sin (10t)
fdc31 + fdc32 sin (10t)

]
(deg) (51)

where the constant coefficients fdc11, fdc12, fdc21, fdc22,
fdc31 and fdc32 were randomly selected from the interval
(0, 1]. Moreover, the additive zero mean white noise with

50 dB signal–to–noise ratio was added to position and
velocity sensors to obtain a more realistic approach by
modeling noise of sensors. The reference position ηr (t) was
selected as

ηr(t) = [ 10 sin(0.1t) 15 sin(0.1t) 20 sin(0.1t) ]
T

(deg).

To ease the gain tuning by getting rid of all bounding con-
ditions about control gains and system uncertainties, the
self–tuning algorithm in (Bidikli et al., 2013) and (Bidikli
et al., 2014) was utilized after choosing α = I3 that yielded
K = diag{2.8, 1.3, 4.75} and β = diag{3.6, 1.5, 4.2}.
The actual and reference positions are shown in Figure 1,
while the position tracking errors and the control inputs
are shown in Figures 2 and 3, respectively. Simulation
results confirm that the proposed controller meets the
tracking objective.
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8. CONCLUSIONS

In this paper, attitude tracking control of a small–scaled
unmanned helicopter is considered. To realize this purpose,
the overall problem is transformed into a second order
system by utilizing some reasonable simplifications for
the rotor model under the hovering flight conditions. A
continuous nonlinear robust controller, that compensates
the dynamical uncertainties and the asymmetry in the
input gain matrix have been proposed. Provided that the
input gain matrix has non–zero leading principle minors
the proposed controller ensures semi–global asymptotic
tracking. The overall analysis is supported by Lyapunov
based arguments. The performance of the designed con-
troller is demonstrated via simulation studies.

The main advantages of the designed controller can be
summarized as:

• Highly uncertain flight dynamics, strong coupling
effects and the natural instability of the small–scaled
unmanned model helicopter are coped with.

• The attitude control of the small–scaled unmanned
helicopter is provided by taking the highly nonlinear
dynamics of it into account.

• The non–symmetric structure of the input gain ma-
trix of the small–scaled unmanned model helicopter
is compensated.

• Different from the past works that designed control
input torques, actual control inputs (i.e., δlon, δlat,
δped) are designed.

All of these aspects show the realisticity and applicability
of the designed controller for the real time applications.

Future work will concentrate on output feedback versions
of the proposed method in order to remove the need of
velocity measurement in the controller implementation.
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