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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Electronics and Communication Engineering

by
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Assoc. Prof. Dr. Mustafa Alper SELVER
Department of Electrical and Electronics Engineering, Dokuz Eylül University

13 July 2017

Prof. Dr. Bilge KARAÇALI
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ABSTRACT

DEVELOPMENT OF A UNIFIED ANALYSIS FRAMEWORK FOR

MULTICOLOR FLOW CYTOMETRY DATA BASED ON

QUASI-SUPERVISED LEARNING

In this dissertation, automatic compensation and gating strategies are investigated for

multi-color flow cytometry data analysis. We propose two clustering algorithms that combine

the quasi-supervised learning algorithm with an expectation-maximization routine for auto-

matic gating. The quasi-supervised learning algorithm estimates the posterior probabilities of

the different cell populations at each sample in a dataset in a manner that does not involve

fitting a parametric model to the data.

We have developed two different binary divisive clustering algorithms based on expec-

tation maximization with responsibility values calculated using the quasi-supervised learning

algorithm instead of the probabilistic models used in conventional expectation maximization

applications. Our clustering algorithms determine the number of clusters in run-time by mea-

suring the overlap between the estimated clusters in each provisional division and comparing

it with the previous one to determine whether the division is warranted or not. Since this

type of clustering is indifferent to the underlying distribution of dataset, it is well suited to

automatic flow cytometry gating.

The second clustering algorithm improves upon the first one using a simulated anneal-

ing approach. Its iterative structure allows finding the global minimum of a cost functional

that achieves the best separation point by gradually smoothing the decision regions in each

iteration.

Finally, we have developed a joint diagonalization and clustering method for automatic

compensation of flow data based on the methods above. The proposed method identifies cell

sub groups using the annealing-based model-free expectation-maximization algorithm and

finds a data transformation matrix that achieves orthogonality of the covariance structure of

each identified cell cluster using fast Frobenius diagonalization.

We have tested all proposed algortihms on both synthetically created datasets and real

multi-color flow cytometry datasets. The results show that our automated gating algorithms

are very successful in identifying the distinct cell groups so long as there is enough statistical

evidence for their presence. In addition, the automated compensation procedure was also

successfully applied on the synthetically created dataset and real multi-color flow cytometry

data of lymphocytes that are a low autofluorescence cell group. However, the automated

compensation algorithm needs further study to be generalized to high autofluorescence cell

types where proper compensation does not necessarily coincide with an orthogonal covariance

structure.
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ÖZET

ÇOK RENKLİ AKIŞ SİTOMETRİSİ VERİLERİ İÇİN YARIGÜDÜMLÜ

ÖĞRENME TEMELLİ TÜMLEŞİK BİR BİR ANALİZ PLATFORMU

GELİŞTİRİLMESİ

Bu tezde, çok renkli akış sitometri veri analizi için otomatik kompensasyon ve kapı-

lama stratejileri incelenmiştir. Otomatik kapılama için yarı-güdümlü öğrenme algoritmasını

ve beklenti en iyileme rutinini birleştirerek iki gruplama algoritması önerilmiştir. Yarı-güdümlü

öğrenme algoritması veriye parametrik bir model uydurmadan, her bir örnekteki farklı hücre

popülasyonlarının sonsal olasılıklarını tahmin eder.

Sorumluluk değerleri konvansiyonel beklenti en iyileme uygulamalarında kullanılan

olasılık modelleri yerine, yarı-güdümlü öğrenme algoritması ile hesaplanarak beklenti en iy-

ilemeye dayalı iki tane ikili kümeleme algoritması geliştirilmiştir. Kümeleme algoritmalarımız,

her bir geçici bölünmede tahmini kümeler arasındaki örtüşmeyi ölçerek ve bu örtüşmeyi

bir önceki ile karşılaştırarak, bölünmenin doğru olup olmadığı belirler ve böylelikle işleyiş

sürecinde küme sayısını belirler. Bu tür kümeleme, veri kümesinin altında yatan dağılıma

kayıtsız olduğundan, otomatik akış sitometri kapılaması için uygundur.

İkinci kümeleme algoritması benzetimli tavlama yaklaşımını kullanarak ilk kümeleme

algoritmasını geliştirmiştir. Benzetimli tavlama yaklaşımının tekrarlayıcı yapısı bir maaliyet

fonksiyonun global minimumunu bulmayı sağlar ve biz bu yaklaşımı karar bölgelerini her

tekrarda kademeli olarak yumuşatarak en iyi ayrışma noktasını bulmak için kullandık.

Son olarak, yukarıdaki kapılama yöntemlerine dayalı olarak akış verisinin otomatik

olarak kompensasyonu için bir ortak köşegenleştirme ve kümeleme yöntemi geliştirdik. Kom-

pensasyon, farklı florokrom kanalları arasındaki spektral yayılımı gidermek için kullanılan bir

prosedürdür. Önerilen yöntem, hücre alt gruplarını tavlama temelli modelden bağımsız bek-

lenti en iyileme algoritması kullanarak tanımlamakta ve tanımlanan her bir hücre kümesinin

kovaryans yapısının dikkenliğini, hızlı Frobenius köşegenleştirme yöntemini kullanarak elde

eden bir veri dönüşüm matrisi bularak sağlamaktadır.

Önerilen algoritmaları sentetik olarak oluşturulan veri kümeleri ve gerçek çok ren-

kli akış sitometrisi veri kümeleri üzerinde test edilmiştir. Sonuçlar, otomatik kapılama al-

goritmalarımızın yeterli istatistiksel kanıtı olduğu sürece farklı hücre gruplarını tanımada

çok başarılı olduğunu göstermektedir. Buna ek olarak, otomatik kompensasyon prosedürü,

başarılı bir şekilde sentetik olarak oluşturulmuş veri setine ve gerçek düşük otofloresanslı

lenfosit hücre gruplarına başarıyla uygulanmıştır, ancak, dikgen kovaryans matrisinin geçerli

olmadığı yüksek otofloresanslı hücre türlerine genellenebilmesi için daha fazla bir çalışmaya

ihtiyaç duyulmaktadır.
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CHAPTER 1

INTRODUCTION

Flow cytometry (FCM) provides rapid analysis of structural and chemical properties

of individual cells in a heterogeneous population (Brown and Wittwer, 2000). It can be used to

sort cells into groups according to their biological properties to which each of them belongs.

Determination of cell diversity makes immunology the main area of FCM (Matton, 2014).

It is widely used in academic research on the immune system and also used in community

hospitals to detect and monitor diseases such as acute leukemia, malignant lymphoma, human

immunodeficiency virus (HIV), etc.

The developed technology allows to analyse cells with more than 20 parameters and

it can process thousands of cells per second. As a result, flow cytometry experiments produce

high-dimensional datasets with a large number of events. Since FCM data is traditionally

interpreted by flow cytometer experts manually on two or three-dimensional plots. In a flow

cytometry experiment, there are two processes that can be automated: compensation and

gating. Gating is the identification of cell subsets using their physical, chemical and biological

characteristics as recorded by the flow cytometry experiment. Conventional gating methods

rely on operator-drawn regions on 2D scatter plots and this process is laborious and time-

consuming. Pathologists draw line segments on 2D scatter plots to identify cell populations

that are of interest for specific diseases. This process is repeated until cell subgroups define

homogeneous populations (Lee, 2011).

In the literature, there are several statistical methods to identify the cell populations

automatically. For instance, Aghaeepour et. al. developed an automated method for cell sub-

type identification in high dimensional FCM data based on k-means clustering (Aghaeepour

et al., 2013), while Pyne et. al. proposed a skew and heavy-tailed distribution fitting approach

(Pyne et al., 2009). The FlowClust algorithm (Lo et al., 2008) aims to fit a t-mixture model

to FCM data after the Box-Cox transformation. The FlowClust algorithm was later modified

by Finak et.al. by introducing a merging step to avoid unwarranted cluster divisions (Finak

et al., 2009). Most of the clustering methods in FCM data analysis applications use one of

Bayesian information criteria (BIC), Akaike information criteria (AIC) or entropy to deter-

mine the unknown number of distinct clusters. This means that the clustering algorithm is to

be run several times for varying number of clusters and the clustering result that achieves the

optimal separation according to the criterion of choice is to be taken as the final output.

The second process that can be automated in a multi-color flow cytometry experiment,
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called compensation, arises from the physics of fluorescence emission. Increasing the num-

ber of fluorochromes used in an experiment causes increased spectral spillover, defined as the

overlap between two or more fluorochromes’ emission spectra. The detectors, in this situation,

cannot identify their specific biomarker reliably since several fluorochromes with overlapping

emission spectra jointly contribute to the detector readings. Compensation can be performed

either during data collection on the flow cytometer following calibration or after data collec-

tion in software. The procedure is formalized as a linear algebra problem (Roederer, 2002;

Bagwell and Adams, 1993a) since spillover parameters can be measured using control beads.

The most important aspect in compensation is the ability to visualize all distinct subpopula-

tions as distinctly as possible from each other. To this end, several research groups have been

focusing on automatic compensation and automatic gating of multi-color flow cytometry data

(Hahne et al., 2009; Sugár et al., 2011). However, all proposed methods rely on calculating the

spillover coefficients using control beads (Roederer, 2001). On the other hand, using control

beads for calibration purposes may not be possible or feasible before each experiment.

This dissertation offers an automated flow cytometry data analysis framework that con-

tains two clustering algorithms for gating and one joint diagonalization procedure for com-

pensating multicolor flow cytometry data. The principal contributions are as follows:

• We have developed model-free expectation-maximization clustering algorithm which

is a binary hierarchical divisive clustering. This clustering method becomes the foun-

dation of this thesis, because it provides fully automatizes cell subgroup identification

without any model fitting. It also deviates significantly from the earlier automated gat-

ing algorithms that require model assumptions on the unknown flow data distributions.

• We have also developed another clustering algorithm, called as annealing-based model-

free expectation-maximization clustering, that combines simulated annealing with model-

free expecation-maximization clustering. It provides better clustering performance by

optimizing the quasi-supervised learning reference set size. Both clustering algorithms

provides automatic number of cluster determination in a heterogeneous dataset and also

do not require any knowledge about data distribution or specific parameters in contrast

to the earlier methods.

• We proposed, for the first time, to use gamma normalization for flow cytometry data vi-

sualization. Gamma normalization allows calculating the operational parameters auto-

matically from raw intensities to obtain an optimal use of the dynamic range. Compared

to the original linear scale, after gamma normalization, all three clusters are placed dis-

tinctly and can therefore be identified with relative case using a statistical clustering

method of choice. Existing normalization schemes suffer from a lack of structured
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means of adjusting transfer parameters, while the parameters associated with gamma

normalization are easily calculated from the raw intensity values.

• We have developed an automatic compensation procedure for low autofluorescence cell

groups like lymphocytes based on orthogonalization of fluorochrome channels within

each cluster. This procedure provides an automatic compensation without single-color

control samples and better cluster placement that makes automatic quadrant identifica-

tion enable. Automatic compensation is a poorly studied except in flow literature, this

method represents the first effort to this end that does not rely on using control beads

for calibration of compensation parameters.

In Chapter 2, we give the background information about flow cytometry and the math-

ematical techniques used in this thesis such as quasi-supervised learning (QSL), expectation

maximization (EM), fast algorithm for joint diagonalization with non-orthogonal transforma-

tion (FFDIAG). First, the automated gating algorithm, model-free expectation maximization,

is introduced in Chapter 3. The method is a binary hierarchical divisive clustering algorithm

with linear decision regions. It automatically identifies the number of clusters and assigns

samples to these clusters. We adapted this algorithm to detect cell sub groups in a multi-color

flow cytometry data. Automated gating performance using the resulting model-free expecta-

tion maximization algorithm is shown on both synthetically created Gaussian mixtures and

real multi-color flow cytometry data. After, model free expectation maximization algorithm

we have developed annealing based model free expectation maximization that begins with a

bigger reference set and decreases reference set size in each iteration. This produced more

flexible decision regions and more accurate clustering results. We explain the methodology

for annealing based expectation maximization algorithm and discuss on the results on the

same datasets in Chapter 4. Chapter 5 explains the automated compensation procedure that

simultaneously performs compensation and gating on multi-color flow cytometry data. The

joint compensation and gating method is applied on real multi-color flow cytometry data and

results are discussed in detail. At the end, in Chapter 6, we summarize all algorithms for flow

cytometry data analysis automation and discuss their advantages and disadvantages before we

offer concluding remarks.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide background information about flow cytometry and the

mathematical methods that are used in this study: quasi-supervised learning (QSL), expectation-

maximization algorithm (EM), Fast Algorithm for Joint Diagonalization with Non-orthogonal

Transformations (FFDIAG). The chapter begins with an overview of the literature on auto-

mated flow cytometry data analysis.

2.1. Flow Cytometry

Flow cytometry (FCM) is a powerful laser-based cell analysis technique that can char-

acterize the physical, chemical and biological behavior of the individual cell in a heteroge-

neous population. Cells are labelled using specific fluorochromes and then excited by the laser

to emit light at varying wavelengths. The intensity of light emitted by a given fluorochrome

indicates the relative abundance of the corresponding biomarker. The main applications of

flow cytometry are cell counting, sorting, biomarker detection and protein engineering. Flow

cytometry is used in both research applications for distinguishing different cell types and clin-

ical applications to detect the disease, especially blood cancer, and to monitor the disease

progress following therapy (Aghaeepour et al., 2013). Flow cytometry technology is widely

used in immune system applications since it allows grouping cells according to their biological

properties. In flow cytometry experiments, cells are incubated with fluorochrome-conjugated

antibodies to identify the biomarkers of interest regarding biological and biochemical behavior

of cells. Nowadays, more than 20 biomarkers can be assessed simultaneously in multi-color

flow cytometry experiments through the developed technology (O’Donnell et al., 2013). In

a single session, a flow cytometer can analyze 10.000 to 1.000.000 cells. In this section, we

explain the different stages of a flow cytometry experiment and subsequent data analysis. We

describe the working mechanism of a flow cytometer, data pre-processing steps such as data

transformations, and compensation and gating procedures of the flow cytometry data, along

with a literature review on the automation of compensation and gating procedures.
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2.1.1. Flow Cytometry Experiment

A basic flow cytometry experiment is illustrated in Figure 2.1 by Maecker et. al in

four different steps. Sample preparation is the first step of the experiment. In this step, blood

is obtained from the subject and mononuclear cells are separated; these mononuclear cells

are either cryopreserved for later use or stained with aim specific fluorescents. In the second

step, instrument setup, detector sensitivities are calibrated using non-stained and single-color-

stained cells. In each experiment this step must be performed to obtain robust results. The

third step is data acquisition; the stained mononuclear cells are passed through a tube and

each cell collides with the laser beam at interrogation point. The light scatters according to

physical, chemical and structural properties of the cell. The forward and side detectors capture

scattered light and convert intensity values into voltage. After data acquisition, the last and

most problematic step begins: data analysis. Voltage values are send through a computer

and visualized using specific software. Cell populations of interest are marked on 2D scatter

plots manually by experts. Identification of distinct cell populations is important to monitor

or diagnose the disease.

Figure 2.1. A typical flow cytometry experiment

(Source: Maecker et al., 2012)

A flow cytometer consists of three main parts; fluidics, optics and electronics. In fluidics part,

the cells or particles are transported to interrogation point where each cell collides with the

laser beam. The most important role of fluidics part is to provide that one cell or particle

has to move through the laser beam at a time. To put this in effect, the sample is injected in

the core flow chamber and the particles are accelerated and centered by the pressure of the
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sheath fluid which surrounds the core flow chamber (Sa et al., 2013). This process is called

hydrodynamic focusing. In hydrodynamic focusing, sample pressure is always greater than

the sheath fluid pressure and the proportion between the two pressures allows to determine

the number of cells that pass through a laser beam in a minute.

The optics part consists of lasers and optical filters and this part is the most compli-

cated part. Lasers produce a single wavelength light and in a flow cytometer, there can be more

than one laser source. Forward scatter values give information about the cell size, larger cells

produce larger forward scatter signal, while side scatter values are related with cell structure

and granularity. The cell size and structure information are sufficient to distinguish numerous

cell types but adding biomarkers to the cells gives opportunity to identify specific structures.

Flow cytometer uses several side detectors with optical filters to distinguish the biomarker

effect. The dichroic optical filter performs two functions; firstly it allows to pass the light

with specified wavelength to the side detector, second it deflects the light with unspecified

wavelength.

Cells using forward and side scatter values according to their physical characteristics.

Also, cells can be separated by using fluorochromes as a biomarker to detect whether a cell ex-

press a target protein or not. Fluorochoromes have unique spectra for excitation and emission.

A single fluorochrome is excited at a particular wavelength by the flow cytometer laser and it

emits the light at a longer wavelength. When a fluorochrome is excited, it absorbs the light

and its electrons move from a ground state (S 0) to maximal energy level (S 2). The duration of

the excitation state depends on the fluorochrome but typically it is 1 − 10 nanoseconds. After

excitation, electrons release energy, through fluorescence, while they fall to lower and more

stable energy level (S 1). At the end, the electrons turn back to ground state energy level. This

process is summarized using Jablonski Energy Diagram illustrated in Figure 2.2 (Ermolaev

and Lubimtsev, 1987).

Figure 2.2. Jablonski Energy Diagram
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Figure 2.3. Excitation and Emission Spectrum of Common Dyes in Flow Cytometry

Experiment

(Source: Baumgarth and Roederer, 2000)
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Figure 2.4. Flow Cytometry Parts

The wavelength or frequency difference between excitation and emission spectra is called

as Stokes shift. The Stoke shift value is fluorochrome specific, so it changes according to

the chosen fluorochrome. Flow cytometer uses several side detectors with optical filters to

distinguish the biomarker effect. The laser, optical filters and detectors are shown in Figure

2.4.

The electronics part converts the light intensity that is captured by the forward and side

detectors to analog voltage information in photomultiplier tubes (PMT). The voltage pulse

generated by a single cell is directly related with the cell structure and fluorescence intensity.

This analog information is then converted to digital information that can be processed by the

computer. Some flow cytometers also have cell sorting functionality that can collect one cell

type of choice using electrostatic charge, much like the operating principle of ink jet printers.

2.1.2. Data Structure and Analysis

In flow cytometry experiments, a single cell produces multivariate data that correspond

to forward scattered light, side scattered light and the light captured with FL1−FLn detectors.

When the scattered light information is converted to digital value it is stored in computer

with a specific file format developed by the Society for Analytical Cytology, called as Flow

Cytometry Standard (FCS) format (CYT, 1990). Table 2.1 shows a matrix representation of

the flow cytometry data. Events represent individual cells and markers represent detectors.
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Intensity vales are indicated by Ii j and i represents the event number and j represents the

respective marker. Once a data file has been saved, flow cytometry data can be displayed in

different forms in specific FCM data analysis softwares such as: FlowJo (Tree Star, Ashland,

OR), FCS Express (De Novo Software, Glendale, CA) etc. Generally two or three dimensional

plots are used with one parameter in each axis for data visualization.

Event Marker 1 Marker 2 . . . Marker N
1 I11 I12 . . . I1N
2 I21 I22 . . . I2N
... ...

. . .
. . .

...106

Table 2.1. Matrix Representation of Flow Cytometry Data

Analysis of the flow cytometry data requires pre-processing steps such as data trans-

formation and compensation. In the next section, we provide a description and literature

review of the flow cytometry data analysis pre-processing steps in detail with illustration on a

synthetically created toy dataset.

2.1.2.1. Data Preprocessing

The raw flow cytometry data contains intensity measurements captured from detectors

and these raw data need multiple pre-processing steps to improve data quality and visual-

ization. The first pre-processing step is data tranformation. Generally, cell populations are

described using log-normal transformation, however there are some issues using this transfor-

mation. For example, log-normal transform does not work for normalized data if it contains

negative values. In this case, using alternative transformations, such as logicle (Parks and

Moore, 2005), Box-Cox (Box and Cox, 1964), generalized hyperbolic arcsin and son on, is a

more effective solution.

Another pre-processing step is compensation. It is required to remove the spillover

effects, caused by overlap, between the emission spectra of the fluorochromes. Control sam-

ples are stained using only one fluorochrome to create a baseline measurement. The baseline

measurements for each channel are stored in a spillover matrix. The compensated data is

generated by inverting the spillover matrix and multiplying it with the uncompensated raw

data. Below, we elucidate different data transformation scales and the manual compensation

procedure.
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Data Transformation

Scale transformation is important for making quantitative comparisons of distance between

intensity levels of samples in flow cytometry as well as for better visualization of cell sub

groups. The basic data visualization scale in flow cytometry data analysis is the log scale

(Finak et al., 2010). It can stabilize the variance of cell populations and it can be defined as;

S (x) = log(x) , x > 0 (2.1)

The contradiction of the log transformation is that it cannot represent the negative data values

of unstained cells, and it causes poor visualization for low intensity and unstained data.

Due to the problems of the log-transform with negative values, an alternative trans-

formation is defined based on the hyperbolic sine function (Parks et al., 2006). It’s called as

generalized arsinh transformation. Due to the problems of the log-transform with negative

values, an alternative transformation is defined based on the hyperbolic sine function (Parks

et al., 2006). It’s called as generalized arsinh transformation.

S (x) =
1

2
(ex − e−x) (2.2)

The log scale transformations can be further generalized as biexponential transforma-

tion which is described in Equation 2.3 with parameters a, b, c, d, f ,w (Parks et al., 2006).

S (x; a, b, c, d, f ) = ae(b(x−w)) − ce(−d(x−w)) + f (2.3)

All improvements in log scale seek linear representation of negative and low intensity

values and logarithmic representation of higher intensity values while exhibiting a smooth

transition between the extreme values of the raw data (Finak et al., 2010). A subset of the bi-

exponential functions that are linear near zero are called logicle function. The logicle method

solves this problem by plotting data on axes that are linear around a data value of zero and

logarithmic at higher (positive and negative) values (Parks et al., 2006) and it is the specialized

biexponential tranformation for flow cytometry data visualization. It is defined as

S (x; T,m,w, p) = Te−(m−w)(ex−w − p2e−(x−w)/p) + p2 − 1 for x ≥ x (2.4)
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where T defines the maximum data value to be displayed, m is the range of the display, w

is the range of the linearization around 0 and p is introduced for compactness. However, a

relation between p and w is defined trough Equation 2.5, and thus, p and w together represent

a single adjustable parameter. The parameters m and w are in the units of natural logarithm;

typically a range of 104 is specified as m = 4ln(10) = 9.23

w =
2pln(p)

p + 1
(2.5)

In statistical learning, if a distribution fits a dataset well, one can easily apply statistical

methods. Using Box-Cox transformation on flow data is useful in some cases. The Box-Cox

transformation yields a dataset that follows approximately a normal distribution (Box and

Cox, 1964). The Box-Cox transformation is defined as

S (x) =
xλ − 1

λ
(2.6)

where λ is the transformation parameter. When x � 1 the expression above approaches the

indeterminate form 0/0, and the Box-Cox formula is redefined for λ = 0 as

S (x) =
eλlog(x) − 1

λ
(2.7)

≈ (1 + λlog(x) + 1
2
λ2log(x)2) − 1

λ
(2.8)

≈ log(x). (2.9)

We have created a toy dataset with three distinct clusters, C1, C2 and C3, to illustrate the

effects of the various data transformation methods. The data consists of exponential of three

normal distribution with different sample sizes and different mean and covariance matrices.

The normal distributions are defined for clusters C1, C2 and C3 respectively as;

Σi = σ
2
i × I3×3 for i = 1, 2, 3 (2.10)
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where σ2
1 = 0.6, σ2

2 = 0.8, σ2
3 = 0.5 and mean vectors are

μ1 =

[
8 8 8

]T
(2.11)

μ2 =

[
4 4 4

]T
(2.12)

μ3 =

[
4 8 8

]T
. (2.13)

with sample sizes N1 = 1000, N2 = 800 and N3 = 1000. In Figure 2.5 we gave histogram of

the intensity values of all three variates and three dimensional scatter plot of the synthetically

generated toy dataset. Any statistical method or human eye can not detect without any trans-

formation that the dataset has three different clusters. So, data transformation is needed and

we applied log, arsinh, logicle and Box-Cox transformation.

12



Figure 2.5. Raw Data Representation: (a)-(c) Histogram plots of first, second and third

variate respectively, (d) 3D Scatter plot of raw data
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Figure 2.6. Log Scale Data Representation: (a)-(c) Histogram plots of first, second and

third variate of log-scale data respectively, (d) 3D Scatter plot of log scale

data
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Figure 2.7. Arsinh Scale Data Representation: (a)-(c) Histogram plots of first, second

and third variate of inverse hiyperbolic sine data respectively, (d) 3D Scat-

ter plot of inverse hiyperbolic sine scale data
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Figure 2.8. Logicle Scale Data Representation: (a)-(c) Histogram plots of first, second

and third variate of logicle scale data respectively, (d) 3D Scatter plot of

logicle scale data
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Figure 2.9. Box-Cox Data Representation: (a)-(c) Histogram plots of first, second and

third variate of Box-Cox transformed data respectively, (d) 3D Scatter plot

of Box-Cox transformed data
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Compensation

All fluorochromes have specific excitation and emission spectra and flow cytometry measures

cell properties using emitted light from these fluorochromes. Optical filters on the detectors

capture the scattered light in a limited frequency range and when two or more fluorochromes’

emission spectra overlap optical filters fail to detect which fluorochrome the increasing light

is coming from (Sugár et al., 2011). Figure 2.10 illustrates the FITC spillover into PE channel.

The amount of the spillover is a linear function; the data can thus be corrected using linear

operations, through a procedure known as compensation.

Figure 2.10. Example of FITC spillover into the PE channel

(Source: https : //www.bdbiosciences.com )

Compensation can be performed either during data collection by flow cytometer or af-

ter data collection with specific software. The most important point in compensation is visu-

alization of all distinct subpopulations as separate as possible from each other. Compensation

procedure is performed by experts using control samples, in each experiment control samples

and machine calibration is needed. Thus, this process is laborious work and it can be cause

interpretation differences between experts and all experts can obtain different compensation

parameters. A typical compensation procedure is summarized below;

• Firstly, unstained cell samples are passed through the flow cytometer and FCS and SSC

detectors are adjusted to display the cell groups of interest on scale.

• Secondly, the spillover for all fluorochromes on all detectors are measured using single-

color controls. The spillover values are then placed on a symmetric matrix.

• Finally, the compensation matrix is obtained by inverting the spillover matrix described

in the second step.

To illustrate the procedure on two channels, Bagwell & Adams put forth a binary

communication channel model (Bagwell and Adams, 1993b). Suppose s1 and s2 are original

signals that represent fluorescence signals from fluorochrome 1 and 2 (FL1 and FL2), and
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o1 and o2 are the observed fluorescence signals. Supppose also that k12 and k21 are the pro-

portions of signal s1 crossing over o2 and s2 crossing over o1, respectively. A diagrammatic

representation of this two-signal crossover system is illustrated in Figure 2.11. The observed

signals o1 and o2 can then be obtained by

o1 = (1 − k12)s1 + k21s2 (2.14)

o2 = k12s1 + (1 − k21)s2. (2.15)

Figure 2.11. Diagrammatic representation of a two-signal crossover system

Algebraically solving Equation 2.14 and 2.15 for s1 and s2 in terms of o1 and o2, we

get

s1 = o1

(
1 − k21

1 − k12 − k21

)
+ o2

( −k21

1 − k12 − k21

)
(2.16)

s2 = o1

( −k12

1 − k12 − k21

)
+ o2

(
1 − k12

1 − k12 − k21

)
(2.17)

The crossover constants, k12 and k21, are estimated by appropriately analyzing two controls:

fluorochrome 1 alone and fluorochrome 2 alone. In the notation of the formulation that fol-

lows, the subscript represents the signal and the superscript represents the control. Therefore,

s1
2, the signal s2 when only control samples s1 sent, and s2

1, the signal s1 when only control

samples s2 sent, are both 0 by definition. The crossover coefficient k12 can be calculated by

k12 =
o1

2

o1
1
+ o1

2

(2.18)
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using one event. If the fluorochrome 1 control contains n1 events, the complete solution is

k12 =

∑n1 o1
2∑

n1
o1

1
+

∑
n1

o1
2

(2.19)

In the same manner k21 can be written with n2 control events for fluorochrome 2 as

k21 =

∑n2 o2
2∑

n2
o2

1
+

∑
n2

o2
2

(2.20)

The source signals can be calculated by incorporating these crossover parameters into Equa-

tions 2.16 and 2.17. Moreover, we can write Equation 2.14 and 2.15 in matrix form as follows:

⎡⎢⎢⎢⎢⎢⎢⎣ o1

o2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ 1 − k12 k21

k12 1 − k21

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ s1

s2

⎤⎥⎥⎥⎥⎥⎥⎦ (2.21)

When we increase the number of fluorochromes, we need an expansion for two fluorochrome

compensation and algebraically, calculation becomes more complex. We have illustrated a

three signal crossover system in Figure 2.12. For an n-fluorochrome experiment, we can write

the observed signals in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

o1

o2

...

on

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − k12 k21 . . . kn1

k12 1 − k21 . . . kn2

...
. . .

. . .
...

k1n k2n . . . 1 − kn1 − . . . − knn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

...

sn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.22)

or equivalently

O = KS (2.23)

where the O matrix denotes the observation signals that contains measured intensity values,

the K matrix is the crossover coefficient matrix combining the spillover coefficients and S is

the source signal matrix that we need to find for compensation. The source signals can then

be found using matrix inversion as

S = K−1O (2.24)
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Figure 2.12. Diagrammatic representation of a three-signal crossover system

This formulation is valid when the compensation problem is constructed with the assump-

tion of no autofluorescence. Otherwise, autofluorescence parameters must be added to the

formulation. Furthermore, (Bagwell and Adams, 1993b) manual compensation is practically

impossible for more than 3 fluorochromes, thus several research groups are focusing on auto-

mated compensation of multi-color flow cytometry data. However, all proposed methods to

date rely on calculating the spillover matrix using control beads (Roederer, 2001; Sugár et al.,

2011). Using control samples in an experiment causes many problems such as workload,

non-repeatable experiment etc. Because flow cytometer calibration changes and this requires

to create a new spillover matrix in each experiment. To do this, control samples are passed

through the cytometer and manually compensation matrix is created before each experiment

and since this process depends on the expert knowledge and there can be differences between

manually created compensation matrices by the flow cytometry experts.
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2.1.2.2. Gating

Identification of cell groups in an FCM dataset is called gating. In standard gating

techniques, this is done manually by a pathologist. The data from the flow cytometer is

plotted in a single dimension as a histogram plot or two-three dimensional scatter plots. The

plots can then be divided into regions depending on the intensity of the fluorescence and gates

are created as manually drawn region on the display. Gates or regions are marked on scatter

plots to focus on specific population interest. Gating is a sequential process; after determining

a gate, addictive gates are formed in that population possibly are remaining channels. Since

the gates are determined by expert-knowledge, saying the how much information gets lost is

difficult.

The first step in gating is distinguishing cell populations according to their light scatter

properties such as size and granularity. For example, dead cells cause lower forward scatter

values than live cells. The most popular example in flow cytometry gating is the lymphocyte

gate shown in Figure 2.13. Since lymphocytes have smaller cell size and lower internal com-

plexity compared to monocytes and neutrophils, their forward and side scatter intensity values

are smaller. Likewise, neutrophils are of more granular structure than the others. As a result

of this, their side scatter values are greater.

Figure 2.13. Gating Example

(Source: http://probes.invitriogen.com)
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Figure 2.14. Gating strategy using two markers

In multi-color flow cytometry experiments, gating is also performed according to whether

cells are positive or negative for respective biomarkes. In this procedure, the pathologist

determines four quadrants on 2D scatter plots using two biomarkers in different data trans-

formation scales such as log, arsinh, biexponential and so on to establish distinct cell sub

groups. In this case, the dimensionality of the data creates problem: Human intuition is lim-

ited to two or three dimensional scatter plots. Typically, the subpopulations are identified

by experts on 2 dimensional scatter plots, so this process is laborious and time-consuming.

The developed technology currently allows analyzing cells up to more than 20 biomarkers,

and this generates complex and high dimensional datasets. Furthermore, there are concerns

over the reproducibility of the results, even by the same expert on the same FCM data (Lo

et al., 2008). The main objective in computational analysis of flow cytometry data is auto-

matic identification of cell populations in a heterogeneous population. In the literature, there

are several methods that have been proposed to this end. Pyne et al. developed a mixture

modelling approach that fits skew and heavy distributions to cell populations. They used ex-

pectation maximization algorithm to estimate likelihood when the algorithm optimally fits

k-variate distributions to the available subpopulations (Pyne et al., 2009). The problem here is

the determination of a specific distribution with optimal parameters and the determination of

the number of subpopulations in the data. Aghaeepour et al. proposed automated cell subset

identification method based on k-means clustering that can capture concave populations using

multiple clusters (Aghaeepour et al., 2013). FlowClust algorithm proposed by Lo et al. fits

a t-mixture model following a Box-Cox transformation (Lo et al., 2008). Finak et al. modi-
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Table 2.2. Most Popular Algorithms for Automated Gating of Flow Cytometry Data

Algorithm Name Supervised(S) / Automated Ref
Unsupervised(U) # of Clusters

FLAME U Y Pyne et al., 2009
FLOCK U Y Qian et al., 2010
FlowClust/Merge U Y Lo et al., 2008; Finak et al., 2009
FlowMeans U Y Aghaeepour et al., 2011
RadialSVM S N Quinn et al., 2007
GemStone U N Miller et al., 2012

fied the FlowClust algortihm as FlowMerge that adds a merging step after all subpopulations

are identified to eliminate superfluos cluster division (Finak et al., 2009). The most problem-

atic part of these flow cytometry analysis methods is the determination of the actual number

of clusters in the dataset. Most of these methods use Bayesian information criteria (BIC),

Akaike information criteria (AIC) or entropy based cost functions to determine the number

of clusters. This means that, in order to identify the number of clusters the algorithm should

be run several times, and after that, optimal parameters such as the number of clusters are

obtained according to one of these criteria. We have summarized most popular algorithms for

automated gating of flow cytometry data in Table 2.2.

2.2. Quasi-supervised Learning Algorithm

In data clustering, both supervised and unsupervised methods have some challenges.

Supervised methods need ground truth datasets for training, and unsupervised methods mostly

propose fitting a distribution to dataset. Quasi-supervised learning (QSL) algorithm is basi-

cally constructed for identifying the two contrast clusters in a data by estimating the posterior

probabilities of individual samples belonging in different groups (Karaçalı, 2010).

In previous works, QSL algorithm was proposed for recognition applications where

labels are available for only one group of data (control samples). A second unlabeled data

is also available which contains both control and target samples. QSL algorithm surpasses

the alternative methods (support vector machines classification and minimum spanning trees)

in synthetically created target identification problems under different scenarios. Önder et al.

(Onder et al., 2013) and Köktürk et al. (Köktürk and Karaçalı, 2013) identified the tumor

regions on colon histopathology images with different resolutions. Köktürk et al. also expand

the QSL algorithm for multi-class problems and created M-ary QSL algorithm. They applied
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M-ary QSL algorithm on electroencephalography data recorded under six different stimuli to

identify the stimulus specific brain activity patterns (Köktürk and Karaçalı, 2012). Güven

et al. has used QSL algorithm on aerial images to detect man-made enviroments in natural

structures for military purposes (Güven, 2010).

In the next section, we have explained QSL algorithm which is also explained by

Karaçalı in detail (Karaçalı, 2010). Since it does not need any knowledge about the dataset

and it can automatically estimate posterior probability of individual sample in the dataset, we

used the QSL algorithm for automatic data clustering instead of abnormality detection. We

used the estimated posterior probability values as the responsibility value of the expectation-

maximization algorithm and we created a clustering algorithm that reduces overlap between

clusters by using expectation-maximization routine with quasi-supervised learning algorithm.

2.2.1. Analytical Computation of Posterior Probabilities using

Quasi-Supervised Learning

We can define a nearest neighbour classifier FR(x) for a given dataset points xi ∈ X

and their respective class labels yi ∈ {0, 1} where i = 1, 2, . . . , l ;

FR(xi) = yi0 with i0 = argmin
i=1,2,...,l

d(x, xi) (2.25)

where d(·, ·) denotes the distance metric on X. The quasi-supervised learning algorithm envi-

sions M identically distributed independent reference sets Rj = {xi, yi} with j = 1, 2, . . . ,M

that consists of n points from two classes and the average fraction of times the nearest neigh-

bor classifier with reference set Rj assigns a point x to the two classes: C0 and C1

f0(x) =
1

M

M∑
j=1

1(FR j(x) = 0) (2.26)

f1(x) =
1

M

M∑
j=1

1(FR j(x) = 1) (2.27)
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For sufficiently large M, it can be shown that

f0(x) � p(x|x ∈ C0)

p(x|x ∈ C0) + p(x|x ∈ C1)
(2.28)

f1(x) � p(x|x ∈ C1)

p(x|x ∈ C0) + p(x|x ∈ C1)
(2.29)

While carrying out an exhaustive evaluation of all possible random nearest neighbor classifi-

cations is not feasible, it is still possible to compute the average number of times a given point

would be assigned to either class at the end of such an evaluation. After an exhaustive nearest

neighbor analysis, f1(x) represents the probability Pr{y = 1} of assigning x to the class C1

based on a reference set R with n points from both classes selected randomly from {xi}:

f1(x) = Pr{y = 1} (2.30)

This probability can be decomposed over sorted samples x(i) conditionally on whether or not

the point x(1) nearest to x is in R, providing

f1(x) = Pr{x(1) ∈ R}1(y(1) = 1) + Pr{x(1) � R}Pr{y = 1|x(1) � R} (2.31)

since Pr{y = 1|x(1) ∈ R} is 1 if y(1) = 1, and 0 otherwise. For notational simplicity, we can

define Ek that describes the joint event where x(1), x(2), . . . , x(k) � R. So we can write Equation

2.31 as,

f1(x) = Pr{x(1) ∈ R}1(y(1) = 1) + Pr{x(1) � R}Pr{y = 1|E1} (2.32)

Pr{y = 1|E1} can be further decomposed as follows:

Pr{y = 1|E1} = Pr{x(2) ∈ R|E1}1(y(2) = 1) + Pr{x(2) � R|E1}Pr{y = 1|E2} (2.33)

We can thus generalize this decomposition for Pr{y = 1|Ek−1} as

Pr{y = 1|Ek−1} = Pr{x(k) ∈ R|Ek−1}1(y(k) = 1) + Pr{x(k) � R|Ek−1}Pr{y = 1|Ek}. (2.34)

26



Then, Equation 2.31 becomes

f1(x) = Pr{x(1) ∈ R}1(y(1) = 1) + Pr{x(1) � R}(Pr{x(2)} ∈ R|E1)1(y(2) = 1) + . . . +

Pr{xl−1| � R}(Pr{x(l) ∈ R|El−1}1(y(l) = 1) + Pr{x(l) � R|El−1}Pry = 1|El) . . .). (2.35)

Note that the reference set R must contain 2n data points from each class. This means that we

do not need to continue the decomposition beyond a point k∗ which defined as;

k∗ = max
{
k|

l∑
k′=k

1(yk′ = 0) ≥ n and

l∑
k′=k

1(yk′ = 1) ≥ n
}

(2.36)

since Pr{x(k∗) ∈ R|Ek∗−1} = 1 and Pr{x(k∗) � R|Ek∗−1} = 0. Note that Pr{x(k) ∈ R|Ek−1} defined

in Equation 2.34 can be calculated by

Pr{x(k) ∈ R|Ek−1} = 1 − Pr{x(k) � R|Ek−1} (2.37)

= 1 −
(

lk+1
0
n

)(
lk+1
1
n

)
(

lk
0
n

)(
lk
1
n

) (2.38)

where lk
0 denotes the number of points that belong to C0 in the set {x(k), x(k+1), . . . , x(l)} and lk

1

represents the number of points that belong to C1 on the same set:

lk
0 =

l∑
i=k

1(y(i) = 0) and lk
1 =

l∑
i=k

1(y(i) = 1) (2.39)

When y(k) = 0, lk+1
0 = lk

0 − 1 and lk+1
1 = lk

1, when y(k) = 1, lk+1
1 = lk

1 − 1 and lk+1
0 = lk

0. This

provides

Pr{x(k) ∈ R|Ek−1}
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n
lk
0

, if y(k) = 0

n
lk
1

, if y(k) = 0

Finally, posterior probabilities can be calculated for any sample xi by carrying out the algo-

rithm on the dataset that excludes the sample in question and its total.

We can simplify the posterior probability decomposition in Equation 2.35 by noting

that the right-hand side of the equation corresponds to a weighted sum of labels. More specif-

ically, distributing the multiplication terms Pr{x(1) � R}, Pr{x(2) � R|E1}, Pr{x(3) � R|E3} and so
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on across the parantheses provides

Pr{y = 1} = Pr{x(1) ∈ R}y(1) + Pr{x(1) � R}Pr{x(2) ∈ R|E1}y(2)

+Pr{x(1) � R}Pr{x(2) � R|E1}Pr{x(3) ∈ R|E2} + . . . +
Pr{x(1) � R}Pr{x(2) � R} . . . Pr{x(�−1) � R}Pr{x(�) ∈ R|E� − 1}y(�) (2.40)

or, in summation form,

Pr{y = 1} =
k∗∑

k=1

a(k)y(k)

where the weights a(k) are defined by

a(k) = Pr{x(k) ∈ R}
k−1∏
v=1

(1 − Pr{x(v) ∈ R}
(2.41)

for all k = 1, 2, . . . , k∗. Note that this calculation can also be written as

Pr{y = 1} =
n∑

i=1

aiyi (2.42)

where ai corresponds to the weight of yi if it appears in the list of y(k) for k = 1, 2, . . . , k∗, and

is equal to 0 otherwise. Organizing {ai} and {yi} in column vectors a and y respectively, we

can write

Pr{y = 1} = aT y (2.43)

to calculate the probability with which a point x belongs to C1 given the dataset {xi, yi}. The

ability of quasi-supervised learning to estimate posterior probabilities for the points {xi} lies

in carrying out the calculation above for a point x = xi while removing the pair (xi, yi) from
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the dataset used in the calculations. Using the notation above, this can be expressed by

Pr{xi ∈ C1} = aT
i yi (2.44)

where the vectors ai and yi corresponds to weights and point labels obtained by carrying out

the posterior probability calculation over the reduced dataset following the removal of (xi, yi).

Finally, letting

πi = Pr{xi ∈ C1} (2.45)

and defining

A = [a1a2 . . . an] (2.46)

we obtain the matrix form for the quasi-supervised learning algorithm as

π = Ay (2.47)

where π denotes the column vector of posterior probabilities πi, for i = 1, 2, . . . , n.

2.2.2. Class Overlap Measures and the Selection of the Optimal

Reference Set Size

Quasi-supervised learning algorithm basically aims to minimize overlap between two

groups and good classification or clustering entail small class overlaps. We can define several

class overlap measures using estimated posterior probabilities f0(x) and f1(x) (Karaçalı, 2010).

The first one is log-likelihood ratio between two classes and represented with MLLR. MLLR

class overlap measure can be defined as

MLLR(x) = log

(
f0(x)

f1(x)

)
(2.48)
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for all x with f0(x) � 0 and f1(x) � 0. The ratio of f0(x)/ f1(x) goes to 1 and MLLR goes to zero

when the sample x is located on the overlap region of two classes. The differences between

posterior probabilities f0(x) and f1(x) provides an another overlap measure, MDi f f , defined as

MDi f f = f0(x) − f1(x), (2.49)

so that, if the sample x is on located the overlap region posterior probabilities become closer

and MDi f f goes to zero. Finally, a third overlap measure can be defined by Henze-Penroze

affinity that computes the integral

∫
x

2 f0(x) f1(x)

f0(x) + f1(x)
dx (2.50)

for probability density function f0(x) and f1(x). This integral goes to 1 when two distribution

are equal. The overlap measure MHP−like(x) can be formulated based on Equation 2.50 as

follows:

MHP−like(x) = f0(x) f1(x) �
p(x|x ∈ C0)p(x|x ∈ C1)

(p(x|x ∈ C0) + p(x|x ∈ C1))2
. (2.51)

The correct estimation of posterior probabilities also depends on the reference set size n. The

reference set size must decrease the class-overlap while maintaining a small reference set size

for better generalizability. A suitable cost function to determine the optimal reference set size

is provided by the expression below to be minimized with respect to n, possibly via a line

search:

E(n) = 4

�∑
i=1

f0(x) f1(x) + 2n (2.52)

The first term is related with class overlap and second term limits the reference set size n.

We have created a toy datasets to illustrate the QSL algorithm. In the first dataset, we

created a two dimensional Gaussian mixture with two different classes C0 and C1. Then, we

estimated the posterior probabilities of each sample belonging to C0. The posterior proba-

bility values are represented using a heatmap on the scatter plot (Figure 2.15). The posterior

probabilities on the far regions of the clusters are close to extreme probability values 1 and 0:

If a sample is in C0 and it is located far from the C1 samples, its C0 posterior probability close

30



to 1. Also, the posterior probabilities on the samples located between the two clusters on the

overlap region, are around 0.5 for both C0 and C1.

In the second case, we created two Gaussian distributed one dimensional groups with

different number of samples. In Figure 2.16, we have demonstrated the log-likelihood ratio

estimation using quasi-supervised algorithm. Results show that log-likelihood ratio estima-

tion using quasi-supervised learning algorithm approaches to true values when the number of

samples in the dataset increase. Since the number of sample is very low at the tails of the

distributions, the estimated results saturate and begin to deviate from true values.
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Figure 2.15. Quasi-supervised learning algorithm results for a toy problem.
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2.3. Expectation-Maximization Algorithm

Expectation-maximization (EM) algorithm was first introduced by Dempster et. al in

1977 to find an approach for iteratively computation of maximum-likelihood estimate (Demp-

ster et al., 1977). In EM framework, the group densities are unknown and the distribution pa-

rameters are estimated from cluster patterns (Jain et al., 1999). The expectation step estimates

the likelihood function using observed data and the maximization step chooses the best pa-

rameters that maximize new likelihood function, and continuous to re-estimate the likelihood

function until convergence.

The conventional EM algorithm aims to fit a specific distribution on mixture dataset

(Shafer et al., 1976; Moon, 1996). Suppose we have observed data points xi with i = 1, 2, . . . , �

and we know that we have two or more groups with known distributional form with unknown

pramaters. If we assume our data contains k different groups and θ j is the data distribution pa-

rameter for jth component in the mixture where j = 1, 2, . . . , k, the expectation maximization

algorithm carries out maximum likelihood estimation for each parameter. Under Gaussian

form assumption, the parameter θ j can be defined as a pairing of the mean μ j and the covari-

ance Σ j of the Gaussian distribution for the corresponding component:

θ j = (μ j,Σ j) (2.53)

The likelihood function for each parameter θ j can be expressed as

Lx(θ j; x1, x2, . . . , x�) = f (x1, x2, . . . , x�|θ j)

=

�∏
i=1

f (xi|θ j) (2.54)

since the points are assumed to have been drawn independently. The maximum likelihood

estimate for distribution parameter θ j is given by:

θML
j = arg max

θ

�x(θ) (2.55)

In many applications, using log-likelihood estimation is more practical. Log-likelihood func-
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tion can be defined as

Lx(θ) = log �x(θ). (2.56)

Since the logarithm is a monotonically increasing function, we can express the best choice for

parameter θ j via

θML
j = arg max

θ

Lx(θ). (2.57)

The EM approach calculates a responsibility value that describes the likelihood of each sample

xi to belong to the jth component. The responsibility value ri, j can be described as (Guo et al.,

2012)

ri, j =
p(xi, θ j)∑k

m=1 p(xi, θ j)
. (2.58)

The parameters θ j are then revised in the subsequent maximization step using a maximum

likelihood procedure that takes the responsibility values into account. A notable distinction

between different expectation maximization procedures arises from the use of the responsibil-

ity values in the maximization step: In one alternative, the responsibility values can be used to

associate each xi with only one component by seeking the component achieving the maximum

among {r(i, 1), r(i, 2), . . . , r(i, k)} for each i, and using only these points to estimate the corre-

sponding model parameters. In the other alternative, the model parameters θ j are estimated in

a way that uses all points simultaneously, but in a way to be influenced more by the points xi

for which r(i, j) are greater and less by the others.

In this thesis, we have combined expectation-maximization algorithm with QSL to

create an automated clustering algorithm and applied it to automated gating of multicolor

flow cytometry data. This method is described in next chapter.

2.4. Fast Algorithm for Joint Diagonalization with Non-orthogonal

Transformations

Joint diagonalization of square matrices is an important problem and is needed in in-

dependent component analysis (ICA) and blind source separation (BSS) applications. There
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are some algorithms for joint diagonalization in the literature (Noble and Daniel, 1977; Golub

and Van Loan, 2012; Bunse-Gerstner et al., 1993; Van Der Vorst and Golub, 2001). Ziehe

et al. took these methods in hand detailed and developed a new joint diagonalization algo-

rithm which is based on second order approximation of a cost function and called it as Fast

Algorithm for Joint Diagonalization with Non-orthogonal Transformations (FFDIAG) (Ziehe

et al., 2004).

Suppose that, we have a set {C1,C2, . . . ,CK} of real valued symmetric matrices, possi-

bly covariance matrices, each of size N × N. FFDIAG algorithm uses an iterative scheme to

solve to follow the optimization problem

min
V∈RN×N

K∑
k=1

∑
i� j

((VCkVT )i j)
2 (2.59)

where V is the transformation matrix that diagonalizes all matrices Ck jointly. The main con-

straint of this optimization problem is the invertibility of the matrix V to prevent convergence

of the Equation 2.59 to the degenerate solution of zero. Invertibility can be enforced by car-

rying out the update of V in multiplicative form through another matrix W as

V (n+1) ←− (I +W (n))V (n) (2.60)

where I is the identity matrix, the update matrix W(n) has zeros on the main diagonal, and n

denotes the iteration number. The update matrix W (n) is defined by

W (n)
i, j =

∑
k E(n)

ki,i
(D(n)

ki,i
− D(n)

k j, j
)∑

k(D
(n)

ki,i
− D(n)

k j, j
)2

(2.61)

where D(n)

k and E(n)

k contain the diagonal and off-diagonal elements of the matrices C(n)

k re-

spectively (Ziehe et al., 2004), such that

C(n)

k = D(n)

k + E(n)

k (2.62)

Now, I + W(n) must be enforced to be invertible to ensure the invertibility of V . The Levi-

Desplanques theorem states that if an n × n matrix A is strictly-dominant, then it is invertible

(Horn and Johnson, 2012). This means that since the diagonal elements of I +W(n) are equal
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to 1, the matrix W must then satisfy the following constraint:

max
i

∑
i� j

|Wi j| = ‖W (n)‖∞ < 1 (2.63)

This can be done by dividing W(n) by its infinity norm or its Frobenius norm when the last

update matrix W(n) exceeds some fixed θ < 1. The correction can be expresses via

W (n) ←− θ

‖W (n)‖F
W (n) (2.64)

where ‖W(n)‖F is the Frobenius norm of W(n) and it’s equal to trace of W (n)W (n)H

‖W(n)‖F =

√
tr(W (n)W (n)H

) (2.65)

and W (n)H
denotes the conjugate transpose of W (n). Then FFDIAG algorithm iteratively diag-

onalizes the covariance matrices by updating them as follows:

C(n+1)

k ←− (I +W (n))C(n)

k (I +W (n))T (2.66)

The pseudo-code describing the FFDIAG method is outlined in Algorithm 1 below as pre-

sented by Ziehe et al (Ziehe et al., 2004):

INPUT: Ck {Matrices to be diagonalized}
W (1) ←− 0, V (1) ←− I, n ←− 1

C(1)

k ←− V (1)CkV (1)T

repeat

compute W (n) from C(n)

k

if ‖W (n)‖F > θ then

W (n) ←− θ
‖W(n)‖F

W (n)

end if

V (n+1) ←− (I +W (n))V (n)

C(n+1)k ←− (I +W (n))C(n)

k (I +W (n))T

n ←− n + 1

until convergence

OUTPUT: V,Ck
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CHAPTER 3

MODEL-FREE EXPECTATION MAXIMIZATION

CLUSTERING

We have discussed flow cytometry gating in Chapter 2. To iterate briefly, identifica-

tion of cell sub groups and analysis of flow cytometry data are performed by pathologists

manually on two or three dimensional scatter plots. This process, however, is laborious and

time-consuming. In addition this, there are concerns over reproducibility of the gating re-

sults even by the same expert on the same flow data (Lo et al., 2008). To overcome these

problems, automated gating methods have been developed for multi-color flow cytometry

data analysis. As described in Chapter 2, several methods have been proposed to model cell

population characteristics. The proposed solutions have different challenges. Some of them

assume all subpopulations have specific distributions such as Gaussian, t-distribution etc. and

this is not realistic assumption. Fiting a model on an unknown data is not expected to give

robust solutions. Also, the most of of them identify the number of clusters by running al-

gorithm several times with different number of clusters and choose the best cluster number

by optimizing the some information criteria (AIC, BIC or Entropy). We need to develop a

fully automatic clustering method that can both identify the number of clusters and deter-

mine the distinct clusters without any knowledge about the dataset. To this aim, we combined

quasi-supervised learning algorithm with expectation-maximization routine and we called it

”model-free expectation-maximization algorithm (MFEM)”. MFEM clustering identifies cell

sub groups in a multi-color flow cytometry dataset automatically.

The model-free expectation-maximization clustering algorithm is basically a binary

divisive hierarchical clustering algorithm for all datasets type not only for flow cytometry

data. It starts by dividing the whole dataset into two groups using an expectation maximization

procedure that relies on a model-free calculation of the group posterior probabilities using the

quasi-supervised learning algorithm (Köktürk and Karaçalı, 2014). The method continues to

a binary division on the subgroups obtained by previous divisions until it achieves a stopping

criterion. It controls further division in each step and automatically identify the number of

clusters.

The main contribution of this method is to provide cell sub groups without making

any model assumptions or number of cluster estimation. Technical details of the algorithm re

discussed next. We applied this clustering algorithm to both synthetically created Gaussian
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mixtures and real multi-color flow cytometry datasets in Section 3.3. In Discussion Section,

we summarize our obtained results and discuss possible improvement strategies for this clus-

tering algorithm.

3.1. Methodology

Let assume that we have a dataset X with elements {xi} where i = 1, . . . ,N and it

has k clusters. The model-free expectation maximization clustering algorithm begins with

randomly assigning sample points to the clusters C0 and C1. After randomly assigning la-

bels, the algorithm estimates the posterior probabilities of the individual samples belonging

to each cluster. These posterior probabilities are then used as the responsibility values of the

expectation-maximization routine, and class labels are re-assigned according to the maximum

likelihood rule.

Following the class label update, the algorithm re-calculates the posterior probabilities

with the new and again update the class labels. This process is repeated until convergence or

a maximum number of iteration. In our algorithm, convergence is defined as the observation

of a label change in no more than one percent of the whole samples at last iteration or 100

iterations.

Our clustering algorithm can be summarized in an expectation-maximization perspec-

tive as follows:

First step : Expectation step

The posterior probabilities of C0 and C1 are computed for each sample xi using the

quasi-supervised learning algorithm:

f0(xi) = Pr{yi = 0}
f1(xi) = Pr{yi = 1}

Second step : Maximization step

The class label of each sample xi is updated and new clusters C0 and C1 are formed

according to the maximum a posteriori classification rule via

C0 ← {xi| f0(xi) ≥ 0.5}
C1 ← {xi| f1(xi) < 0.5}
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This procedure aims to create two distinct clusters that are as separate as from each

other possible. The goodness of the resulting cluster is evaluated by an overlap measure

c(C0,C1) defined by

c(C0,C1) =
1

N0

∑
xi∈C0

f1(xi) +
1

N1

∑
xi∈C1

f0(xi) (3.1)

where N0 and N1 denote the number of sampled assigned to class C0 and C1, respec-

tively. Note this measure calculates a balanced estimate of the overlap between C0 and C1,

since it corresponds to the normalized sum of C0 presence in C1 samples and C1 presence in

C0 samples.

Since we have developed a binary hierarchical clustering scheme, we need to control

the algorithm’s progression before it invokes further divisions. To this end, we have used the

overlap measure c(C0,C1) as a division cost and compared the division cost obtained from

a clustering with the division cost obtained from the clustering of its parent cluster. If the

division cost is greater than the parent cluster division cost, the division process stops and

division is rejected; otherwise, the division is accepted and the algorithm continues to divide

each children into sub clusters.

We explain the methodology for this algorithm in a block diagram in Figure 3.1. Also

in Figure 3.2, we show the binary division of a Gaussian mixture with 3 clusters on a tree

model. At the top, we have the parent data containing all three clusters. Our algorithm divides

this data into two groups, shown in red and blue, with a division cost of 0.0908. Then the child

clusters, namely Estimated Cluster 1 and Estimated Cluster 2, are divided into two clusters

of their own and the respective division costs are calculated. Since Estimated Cluster 1 does

not contain sub clusters, its division cost is greater than parent data division cost, leading to

the rejection of this division. On the other hand, Estimated Cluster 2 has two distinct clusters.

This provides a division cost of 0.0570 less than that of its parent’s division leading to the

acceptance of the division. As a find verification of all clusters at the end of the algorithm we

have checked whether the union of any two cluster forms a compact cluster or not. To do that,

we have calculated the overlap measure between all pairs, then merged the clusters for which

the overlap measure is larger than the first overlap measure.
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Perform 
EM-QSL

Is calculated cost 
greater than 

previous cost?

Reject 
Division

Accept 
Division

NO

YES
Data

Calculate P(C0|x) and 
P(C1|x)

Update Class Labels

C0 ←{x|f0(x)≥0.5}
C1← {x|f0(x)<0.5}

Are updated 
class labels are 

converged?

Assign Random Labels
 and set 
n=nmax

NO

Expectation Step
M

axim
ization Step

a)

b)

Figure 3.1. Block Diagram of Binary Divisive Clustering using Model-free

Expectation-Maximization Algorithm (a). The Model-free Expectation-

Maximization Algorithm is detailed in (b).
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3.2. Performance Evaluation

Clustering aims to divide dataset X into K meaningful groups. There are two basic

questions that need to be answered in a clustering application. First one is how many clus-

ters are there in dataset and the other one is how real is the clustering itself (Maulik and

Bandyopadhyay, 2002). There are some performance metric measures that measure how well

your clustering algorithm. A contingency table is a useful tool for measuring the performance

of clustering. The entries of contingency table are generally frequency counts between real

classes and estimated clusters.

Table 3.1. Contingency Table

Estimated

Clusters

C̃1 C̃2 . . . C̃K

True

Classes

C1 c11 c12 . . . c1K

C2 c21 c22
. . . c2K

...
...

. . .
. . .

...

CK cK1 cK2 . . . cKK

Let C be a contingency table whose rows represent the true class labels while columns repre-

sent the estimated clusters. The entries of the contingency table are the number of samples that

are assigned to cluster j while they were originally located in class i. The entries are denoted

by c11, c12, . . . , cKK , where first subscript represents the true class and the second subscript

represents the estimated cluster.

A popular performance measure often used to evaluate automatic flow cytometry gat-

ing is the F-measure, defined as the harmonic mean of the precision and recall via

Fmeasure =
2 × Pr × Re

Pr + Re
(3.2)

where precision (Pr) for a cluster equals the number of cells assigned to that cluster divided

by the total number of cells assigned to that cluster, and Recall (Re) for a cluster is the number

of samples that are correctly assigned to that cluster divided by the total number of samples of

that cluster (Aghaeepour et al., 2013). For each true-estimated cluster pair, the corresponding
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F-measure can be written as

F(Ci, C̃ j) =
2 × Pr(Ci, C̃ j) × Re(Ci, C̃ j)

Pr(Ci, C̃ j) + Re(Ci, C̃ j)
(3.3)

For each true cluster Ci, a set of F-measures against every predicted cluster C̃ j is calculated,

and the best match with the highest F-measure is chosen and paired with Ci is reported. The

sum of the highest scores for all true clusters produces a combined F-measure, defined as

F(C, C̃) =
∑
Ci∈C

Ci

N
max
C̃ j∈C̃

{F(Ci, C̃ j)} (3.4)

3.3. Dataset & Results

We have applied our clustering method on both synthetically created Gaussian mix-

tures and real multi-color flow cytometry datasets. Real multi-color flow cytometry datasets

are publicly available and obtained from FlowCAP-I Challange (Aghaeepour et al., 2013). We

used Diffuse Large B-cell lymphoma dataset (DLBCL) and Hematopoietic Stem Cell Trans-

plant (HSCT) for testing our clustering methodology.

3.3.1. Synthetically Generated Gaussian Mixture Dataset

Firstly, we have created a toy dataset with 3 distinct clusters, each modeled using two-

dimensional Gaussian distribution with identity covariances but different means located at

coordinates [4 8]T , [4 4]T , [8 4]T , respectively. Samples were drawn from this mixture using

different priors and different number of samples, denoted by N1, N2 and N3, respectively.

The dataset was clustered using both the proposed method and the conventional expectation

maximization routine. The same binary division scheme was followed in both strategies.

Clustering performance for different sample size mixtures are presented in Table 3.2.

Results show that our proposed methods performance is very close to the conventional expec-

tation maximization algorithm. Since the mixture components are Gaussian, it is not surpris-

ing that the conventional expectation maximization algorithm is successful in identifying the

Gaussian components.
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Figure 3.3. Synthetically Created Gaussian Mixture and Respective Class Labels

Figure 3.4. Estimated Clusters using MFEM on Synthetically Created Gaussian Mixture
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Table 3.2. F-measures for the algorithm performance on synthetic dataset for different

sample sizes in clusters

N1 N2 N3 MFEM conventional EM
500 500 1000 0.9622 0.9704
500 1000 2000 0.9633 0.9692
1000 500 1000 0.9694 0.9671
1000 1000 1000 0.9594 0.9682
2000 500 2000 0.8573 0.9746

3.3.2. Diffuse Large B-cell lymphoma (DLBCL) Dataset

Lymphoma is a type of cancer and it occurs when lymphocytes divide in an uncon-

trolled rate. The lymphoma cells look much larger compared to healthy lymphocytes. Diffuse

large B-cell lymphoma (DLBCL) is a fast-growing type of lymphoma, so early diagnosis is

very important for treatment.

In this study, we have used multi-color flow cytometry dataset provided by Flow Cap-I

Challange Committee. The dataset contains 12369 samples in three expert-marked clusters.

The manual gating procedure used to label the cells involved creating two-dimensional scatter

plots of all possible parameter (fluorochrome) pairs (FL1vs2, 1vs3, 1vs4, 2vs3, 2vs4, 3vs4)

and choosing the one in which the distinctions between the different clusters is most con-

spicuous for manual gating. In accordance with this approach, we have also used the same

parameter pairs (FITC and PE Channels) to carry out the clustering experiments.

We have applied both our proposed binary divisive methodology using expectation

maximization with quasi-supervised learning and the conventional expectation maximization

algorithm. Figure 3.5 shows the data with manual gating representing the labels provided by

the expert knowledge based labels. Figure 3.6 shows the clustering results of our proposed

methodology and our algorithm identified two large clusters and our algorithm f-measure

is determined as 0.9051. Also, conventional expectation maximization algorithm captured

two large clusters too, and algorithm f-measure is 0.9040. The inability of both strategies to

identify the third cluster is linked with the size of cluster: In this dataset, the third cluster has

only 25 samples and located between two larger clusters. As a result, there is no statistically

significant information for automatically identifying this smallest cluster.
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Figure 3.5. Manual Gating Results for The Diffuse Large B-cell Lymphoma (DLBCL)

Dataset

Figure 3.6. Automated Gating Results for The Diffuse Large B-cell Lymphoma (DL-

BCL) Dataset Using MFEM

47



Figure 3.7. Automated Gating Results for The Diffuse Large B-cell Lymphoma (DL-

BCL) Dataset Using Conventional Expectation Maximization

3.3.3. Hematopoietic Stem Cell Transplant (HSCT) Dataset

Hematopoietic stem cell transplantation (HSCT) is a treatment that involves intra-

venous infusion of stem cells for lymphoma, leukemia, immune-deficiency illnesses, congen-

ital metabolic defects etc (Couri et al., 2009). It was identified the most efficient approach for

some lymphohematopoietic neoplasms and for some solid tumors as well as non-malignant

disorders (Voltarelli, 2000). Flow cytometry has an important role in monitoring the treatment.

In this experiment, we have used a multi-color flow cytometry dataset associated with

a mouse hematopoietic stem cell transplantation provided by Flow Cap-I Challenge Commit-

tee that contains 8914 samples in four expert marked clusters. Figure 3.8 shows the dataset

along with the labels. Figure 3.9 shows the clustering results of our proposed methodology;

it identified three of the four clusters with a f-measure of 0.8087. The conventional expecta-

tion maximization algorithm determined only two clusters, at a level of f-measure is 0.5947.

Carrying out the original expectation maximization algorithm outside of the binary division

framework assuming four clusters failed since the algorithm could not capture the smallest

cluster. However, assuming three clusters produced a better clustering with a f-measure level
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of 0.9706. In parallel with the earlier dataset the missing cluster was the one with a small size:

the fourth cluster has only 100 samples and located between two larger clusters. Thus, there

is no statistically significant information for automatically identifying this small cluster.

Figure 3.8. Manual Gating Results for The Hematopoietic Stem Cell Transplant

(HSCT) Dataset
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Figure 3.9. Automated Gating Results for Hematopoietic Stem Cell Transplant

(HSCT) Dataset using MFEM

Figure 3.10. Automated Gating Results for Hematopoietic Stem Cell Transplant

(HSCT)) Dataset Using Conventional Expectation Maximization
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3.4. Discussion

We developed a novel clustering algorithm based on a recursive binary division scheme

that does not require any knowledge on the number of clusters or any parametric model as-

sumption. Model-free expectation maximization uses the quasi-supervised learning algorithm

for posterior probability estimation and avoids fitting distributions of unknown data. It begins

by randomly assigning class labels (C0 and C1) to the dataset and iterates until the posterior

probability of the classes match the class assignments of the samples. This procedure divides

each cluster into two daughter clusters. Furthermore, it controls further divisions using a divi-

sion cost that evaluates how separate the resulting clusters are. In the proceed, it automatically

identifies the number of clusters and determines which sample belongs to which cluster.

The performance of the clustering algorithm is measured using F-measure parame-

ter on synthetically created datasets and real multi-color flow cytometry datasets. The re-

sults show that the proposed model-free expectation-maximization algorithm has the ability

to identify the number of clusters, through the performance depends on the distinctness of the

clusters and the number of samples in the clusters: In particular, the algorithm misses small

clusters with few samples, since there is insufficient statistical evidence to warrant their iden-

tification. Furthermore, while the MFEM algorithm can capture clusters on low dimensional

datasets (2D or 3D) accurately, the performance decreases with increasing dimensionality.

In order to address these issues, we have developed a more robust clustering method,

namely the annealing-based model-free expectation-maximization (ABMFEM). In the next

chapter, we explain annealing-based model-free expectation-maximization clustering in de-

tail and we demonstrate its performance on the same synthetically created dataset as well

as the DLBCL dataset using all five fluorochrome channels and HSCT dataset using all six

fluorochrome channels.
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CHAPTER 4

ANNEALING-BASED MODEL-FREE

EXPECTATION-MAXIMIZATION CLUSTERING

In the previous chapter, we have introduced our binary divisive hierarchical cluster-

ing algorithm, model-free expectation-maximization clustering. Annealing-based model-free

expectation-maximization (ABMFEM) is an improved version of the model-free expectation-

maximization algorithm (Köktürk and Karaçalı, 2016). Physical annealing process is the pro-

cess of heating up a solid until it melts and then, the solid is cool down slowly until the temper-

ature of the enviroment. The particles reaches the ground state energy level (Kirkpatrick et al.,

1983). In each cooling step, temperature remains constant for a time and solid reaches ther-

mal equilibrium. In liquid phase, all particles are located randomly, particles forms a highly

structured lattice in ground state and this provides the minimizing energy. Simulated anneal-

ing algorithm is the adopted form of the physical annealing process to clustering problems

(Selim and Alsultan, 1991). The simulated annealing is a powerful optimization technique to

find the global minimum of a function, in clustering problems, we can think ”particles” are

data variables and ”energy” is the objective function wanted to minimize (Brown and Hunt-

ley, 1992). In this perspective, we optimize model-free expectation-maximization algorithm

using the simulated annealing. Its iterative perspective gives an opportunity to create more

flexible decision regions and this improves the algorithm performance. In this chapter, we in-

troduce the details of the annealing based model-free expectation-maximization algorithm and

the results obtained on the same synthetically generated and real multi-color flow cytometry

datasets described in the previous chapter.

4.1. Methodology

The proposed method begins with an initial random assignment of points into two

clusters C0 and C1, followed by the model-free expectation maximization cycle that begins

with a large value for the reference set size parameter n and computes the posterior probability

of C0 and C1 at each sample. The algorithm proceeds by re-assigning the points to the cluster

whose posterior is larger and iterates until convergence. After convergence, the procedure

is re-applied to the data starting with the latest cluster assignments using a smaller n. The

optimal cluster assignments are selected by tracking the cost function in equation 2.52 as n
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decreases to 1, and identifying the level for which E(n) is minimal (Köktürk and Karaçalı,

2016). Updating class labels using larger reference sets achieves flexible decision regions

between clusters. This feature of the algorithm gives better clustering performance on high

dimensional datasets.

The block diagram of the proposed method is shown in Figure 4.1. As seen from the

block diagram, this method uses binary divisive scheme described in the previous chapter for

each value of the n, initialized with the cluster assignments of the previous n.

The modified expectation maximization procedure that forms the basis of the proposed

clustering method is summarized below:

for i = nmax : −1 : 1 do

Expectation Step:

Calculate P(C0|x) and P(C1|x)

Maximization Step:

Update class labels

C0 ← {x| f0(x) ≥ 0.5}
C1 ← {x| f1(x) < 0.5}

end for

The main difference between proposed method and the earlier model-free expectation-

maximization is, annealing over the reference set size n: simulated annealing aims to find the

global minimum of a cost function by decreasing the energy level of a system gradually as

it converges to the desired solution (Kirkpatrick et al., 1983). In the proposed method, n

represents the system energy, as large n produces a more flexible learning system, and E(n)

measures the complexity of the clustering obtained for a given n. At the level where E(n) is

minimal and the clusters exhibit smallest overlap the algorithm produces the best clustering

result.
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Figure 4.1. Block Diagram of the Annealing Based Model-Free Expectation Maxi-

mization Algorithm
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4.2. Dataset & Results

The proposed method was applied to the same datasets described in the previous

chapter and results compared with those of model-free expectation-maximization algorithm.

Note that, in the previous chapter we only used two-dimensional datasets since model-free

expectation-maximization algorithm could not capture the clusters in other dimensions. But

now, we used all dataset dimensions to evaluate our algorithm’s performance.

4.2.1. Synthetically Generated Gaussian Mixture Dataset

We have used Gaussian mixture dataset that described previously. As a reminder, it

had 3 distinct clusters, each modeled using two-dimensional Gaussian distributions with unit

covariances but different means, at [4 8]T , [4 4]T , and [8 4]T respectively. Samples were drawn

from this mixture using different priors. For each cluster, the number of samples are denoted

by N1, N2 and N3, respectively.

The division of this dataset using annealing-based model-free expectation-maximization

algorithm is illustrated on Figure 4.2 along with the respective cost functions. The plots repre-

sent the final data labels were determined with the optimal n that minimized the cost function

E(n). The comparative accuracy table is presented on Table 4.1. The numbers represent av-

erage accuracies for the corresponding algorithms over 20 independent repeats. The results

show that the annealing based approach provides an improvement of the clustering accuracy

achieved by the earlier model-free expectation-maximization algorithm.

Table 4.1. F-measures for the algorithm performance on synthetic dataset for different

sample sizes in clusters

N1 N2 N3 MFEM ABMFEM Conventional EM

500 500 1000 0.9622 0.9659 0.9704

500 1000 2000 0.9433 0.9718 0.9692

1000 500 1000 0.9694 0.9701 0.9671

1000 1000 1000 0.9594 0.9646 0.9682
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Figure 4.2. The data division is illustrated on the first column and respective E(n) func-

tions are given in the second column. The data is first divided into two

clusters (upper row) and division cost is determined. Then, the procedure

is applied on the daughter clusters (second and third rows).
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4.2.2. Diffuse Large B-cell lymphoma (DLBCL) Dataset

We have used the same DLBCL dataset described in Section 3.3.2. However, in con-

trast to the earlier analysis that used only FITC and PE channels we used all five fluorochrome

channels of the dataset since annealing-based model-free expectation-maximization cluster-

ing can capture distinct clusters in high dimensional datasets. The proposed method im-

proved the clustering performance with an accuracy of 0.9959, while model-free expectation-

maximization algorithm performance was 0.9051 in two dimensions and the conventional

expectation maximization algorithm performance was 0.9040.

Note that the proposed algorithm also could not detect the third cluster that had only

25 samples, and this signifies the absence of statistical significance of the small cluster. But

it identified the other two clusters samples with an increased overall accuracy. We have

demonstrated annealing-based model-free expectation-maximization clustering results on a

two-dimensional scatter plot to calculate a comparison metric even though the clustering was

carried out on all 5 dimensions. Results of the proposed method on DLBCL dataset is repre-

sented in Figure 4.3.

4.2.3. Hematopoietic Stem Cell Transplant (HSCT) Dataset

We have also used the HSCT dataset, described in section 3.3.3, to evaluate the pro-

posed method. We had used PE and APC fluorochrome channels only in the previous chapter

for clustering. Now, we have used all six different fluorochrome channels. Annealing-based

model-free expectation-maximization algorithm identified three distinct clusters and missed

the smallest cluster like model-free expectation-maximization, that had only 100 samples

of the 8914 samples. However, annealing-based model-free expectation-maximization algo-

rithm performance is significantly higher compared to model-free expectation-maximization:

model-free expectation-maximization performance was 0.8087 with three distinct clusters

while annealing-based model-free expectation-maximization with a f-measure of 0.9827. The

scatter plot showing the resulting clusters is shown in Figure 4.4.
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Figure 4.3. Estimated CLusters for The Diffuse Large B-cell Lymphoma (DLBCL)

Dataset using ABMFEM

Figure 4.4. Estimated CLusters for The Hematopoietic Stem Cell Transplant (HSCT)

Dataset using ABMFEM
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4.3. Discussion

In this chapter, we introduced a recursive binary division algorithm for unsupervised

clustering that does not require any knowledge about the data such as data distribution, model

parameter, the number of clusters etc.The method operates by dividing the original dataset

into two daughter clusters using the posterior probability estimates provided by the quasi-

supervised learning algorithm in an expectation-maximization framework. In contrast to the

earlier version, the algorithm uses an annealing-based approach to optimize the reference set

size parameter n. It begins with a larger n and decreases n in each step until the entropy-

based cost function minimized. The same procedure is then applied to the daughter clusters

themselves and their daughter clusters and so on, until the division cost of the daughter clusters

exceeds the division cost of the parent cluster by a significant margin.

In experiment results, the proposed method accurately identified the clusters of interest

both on synthetic datasets as well as datasets collected from real multi-color flow cytometry

experiments. The experiments also showed that clusters with too few samples were still at

risk of being not recognized as separate clusters. From a statistical standpoint, it is not sur-

prising that such small clusters are missed due to insufficient representation within the overall

dataset. However, in applications where small clusters are of particular significance, addi-

tional measures are to be taken so that clusters with small representation are also recognized

as such.
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CHAPTER 5

AUTOMATIC COMPENSATION OF MULTICOLOR

FLOW CYTOMETRY DATA USING JOINT

DIAGONALIZATION

In multi-color flow cytometry experiments, manual analysis of the data becomes prac-

tically impossible as the number of parameter increases. To remedy the situation, flow cy-

tometry data first needs a pre-processing step called compensation. Increasing the number of

fluorochromes causes spillover, defined as the overlap between two or more fluorochromes’

emission spectra. As a result the detectors cannot identify exclusively their target biomarkers

when more than one fluorochrome are present in a cell with overlapping emission spectra.

Compensation can be performed either during data collection on the flow cytometer, or after

data collection in software. The compensation procedure is typically formalized as a linear

algebra problem (Roederer, 2002; Bagwell and Adams, 1993a) described in Chapter 2, since

the principal of superposition in measured ligth intensity applies through spillover parameters

that can be measured using control samples. The most important goal in compensation is vi-

sualization of all distinct subpopulations as separate as possible from each other. To this end,

research groups have been studying automatic compensation and automatic gating of multi-

color flow cytometry data. However, in all proposed methods, control samples are needed

to calculate the spillover coefficients (Roederer, 2001). Measuring the control samples and

calibrating the flow cytometer for each experiment, on the other hand, is laborious work.

In this chapter, we describe our proposed methodology for automatic compensation

and gating of high dimensional multi-color flow cytometry data. Our method is constructed on

the premise that when properly compensated, all fluorochrome channels must be as orthogonal

and independent from each other as possible. The algorithm begins with a data clustering

part. Following the clustering of the uncompensated data, a joint diagonalization matrix is

calculated over the identified clusters using Fast Frobenius Diagonalization (FFDIAG). Data

is finally transformed using this matrix into a new coordinate system where all fluorochrome

channels are approximately orthogonal to each other within each cell cluster.
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5.1. Methodology

Flow cytometry gating aims to identify the distinct cell sub groups in a heteroge-

neous population. In a compensated dataset, these cell sub groups are placed in distinct quad-

rants and in such a way that the intensity values on each fluorochrome are approximately

orthogonal to each other. Based on this premise, we have developed an automatic compensa-

tion procedure for multicolor flow cytometry datasets by combining our previously published

annealing-based model-free expectation maximization algorithm and the FFDIAG algorithm.

In addition, we have introduced gamma normalization for transformation of raw intensity

measurements as it provides full automation in data transformation and achieves an optimal

use of the dynamic range of values.

In the next sections, firstly we explain the gamma normalization and we demonstrate

the effect of gamma normalization on the toy dataset used in Chapter 2. Next, we introduce

the joint clustering and orthogonalization algorithm that achieves automated compensation

and clustering of the flow cytometry data. Finally, we present results of this the algorithm on

synthetically created Gaussian mixtures and on real multi-color flow cytometry data.

5.1.1. Gamma Normalization

We used gamma normalization for data visualization and processing of the flow cy-

tometry intensity data because it allows calculating the operational parameters automatically

from raw intensities to obtain an optimal use of the dynamic range. For a collection of raw

intensities {xi}, i = 1, 2, . . . ,N, the gamma normalized data x̃i is defined as;

x̃i = (axi + b)γ (5.1)

where a is the scale parameter, b is the bias value and γ is the power factor. The parameters a

and b are defined by the expressions

a =
(N − 1)

(N + 1)(x(N) − x(1))
(5.2)

b = −ax(1) +
1

N + 1
(5.3)
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where x(i) denotes the ith smallest intensity values among {xi} with

x(1) = min
i

xi (5.4)

and

x(N) = max
i

xi, (5.5)

while γ is determined by a line search to achieve

N∑
i=1

(
i

(N + 1)
− (axi + b)γ

)
= 0 (5.6)

leading to an optimal use of the dynamic range between 0 and 1 without altering the in-

herent intensity information. We demonstrated four different transformation scales for flow

cytometry data including gamma normalization and these described previously in Chapter

2. Compared to the original linear scale, after gamma normalization, all three clusters are

placed distinctly and can therefore be identified with relative case using a statistical cluster-

ing method of choice. Since gamma normalization also provides full automation of the data

transformation, we used it in this study as a preprocessing step on raw intensity data. We have

demonstrated the gamma normalization of the toy dataset described in Chapter 2 in Figure

5.1.
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Figure 5.1. Gamma Normalized Instensity Values for Toy Dataset that Created in Chapter 2
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5.1.2. Joint Clustering and Orthogonalization Algorithm

The main objection of our study is to achieve full automation in flow cytometry data

analysis as it applies equally to both compensation and gating. To this end, we have evaluated

two variants of the same underlying strategy; one is based on appliying the joint diagonaliza-

tion procedure on the gamma normalized data, and the other is based on applying the joint

diagonalization procedure on the raw data much like conventional compensation, following

initial clustering.

Our algorithm block diagram is shown in Figure 5.2. First, the uncompensated dataset

is gamma normalized and clustered using the annealing-based expectation maximization algo-

rithm. The compensation matrix is obtained from the resulting clusters using Fast Frobenius

Diagonalization (FFDIAG). The compensation matrix is then applied to the gamma normal-

ized data and the compensated data is gamma normalized and clustered again one last time

for better visualization and as final verification of the earlier clusters.

As an alternative, the second scheme carries out the joint diagonalization on the raw

data since conventionally, the compensation matrix is obtained on the raw dataset instead of

the gamma normalized data, we have compared the results in both cases obtained using both

methods on synthetically created data as described below.

Figure 5.2. Block diagram of the proposed method

5.2. Results

We have illustrated our approach on the synthetically created dataset first and then on

real multi-color flow cytometry data. Below, we first describe the specifics of the synthetic
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dataset and provide the results obtained using both alternatives. Next, we present results

obtained on three different scenarios derived using real flow cytometry data.

5.2.1. Synthetically Created Dataset

We have created a toy dataset with 3 distinct clusters, C1, C2, C3, each modeled using

the exponential of three-dimensional Gaussian components with covariance matrices Σ1, Σ2,

Σ3 and with means μ1, μ2 and μ3, respectively. Samples were drawn from this mixture using

different priors. For each cluster the number of samples were N1, N2 and N3, respectively. In

the experiment, the covariance matrices were taken as

Σ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.4 0.1 0.2

0.1 0.6 0.5

0.2 0.5 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Σ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.5 0.2 0.1

0.2 0.4 0.2

0.1 0.2 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Σ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3 0.1 0.3

0.1 0.4 0.1

0.3 0.1 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5.7)

and with the mean vectors

μ1 =

[
3 5 2

]T
(5.8)

μ2 =

[
3 4 3

]T
(5.9)

μ3 =

[
3 3 5

]T
. (5.10)

The toy data set illustrated in Figure 5.3. As seen from the figure, some transformation is

required to identify the different clusters. Next, we have applied gamma normalization and

clustered the dataset using annealing-based model-free expectation-maximization algorithm

with f-measure 0.9645. The clustering results before the diagonalization on the gamma nor-

malization scale is illustrated in Figure 5.4, while the estimated clusters on the original data

domain are in Figure 5.5. Then, we have applied FFDIAG algorithm on gamma normalized

scale as for the first alternative, to make clusters jointly diagonal and performed a final cluster-

ing. The diagonalized clusters are presented in Figure 5.6. Finally, we have calculated another

diagonalization matrix on raw data scaleas for the second alternative, and finished with a final

clustering. The results are shown in Figure 5.7.

Diagonalization results show that calculating the transformation matrix for compen-

sation on the gamma normalized scale or raw data scale causes some differences. This is due

to differences of the covariances in different domains. Since the elements of the covariance
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matrices contain large values on raw data domain, FFDIAG algorithm cannot converge to a

good diagonalization matrix. While the conventional compensation performed on raw data

scale, in our case diagonalization of clusters on raw data scales caused deformations on the

clusters’ shape. On the other hand, calculating the transformation matrix over the clusters

on the gamma normalized scale creates visually better looking clusters with more prononced

separation.

Third Variate

Second VariateFirst Variate

1000 1000

1000

1000

1000

10001000

1000

1000
0

0

00

Figure 5.3. Original toy dataset after the exponential transformation. In calculations,

this data was used to simulate raw intensity data for compensation and

clustering.
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Figure 5.4. Gamma Normalized Toy Data with The Estimated Cluster Labels
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Figure 5.5. The Estimated Cluster Labels on Raw Data
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Figure 5.6. Gamma Normalized Data After Clustering and Joint Diagonalization (first

alternative)
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Figure 5.7. Gamma Normalized Data After Clustering and Joint Diagonalization (sec-

ond alternative)
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5.2.2. Results on the Real Multi-Color Flow Cytometry Dataset

The real multi-color flow dataset was obtained from Flow Repository database (Repos-

itory ID: FR-FCM-ZZWB (Gruetzkau, 2010)). Based on the experiment definition, whole

blood leukocytes were taken from three healthy individuals and analyzed in an 8-color flow ex-

periment. The cells were experimentally modified by the depletion of one particular cell type

per sample, including granulocytes (using CD15-MACS-beads), monocytes (using CD14-

MACS-beads), T lymphocytes (CD3-MACS-beads), T helper lymphocytes (using CD4-MACS-

beads), and B lymphocytes (using CD19-MACS-beads).

We have chosen the lymphocyte population whose autofluorescence is smaller com-

pared to other populations in our experiments, since, this allows a better match for the or-

thogonality premise for compensation: In flow cytometry experiments, cell autofluorescence

often interference with the low level measurement of the bounded fluorescence (Alberti et al.,

1987). The dataset has 8 different fluorochrome channels, and both uncompensated and com-

pensated datasets are available. We have tested our algorithm on randomly chosen 10000

samples. Firstly, we took three fluorochrome channels with the most overlapping spectra.

Then, we have also tested our algorithm on the three channels with the least overlap. In the

final scenario, we compensated the dataset using all 8 channels. For validation, have manual

compensation results in the dataset. However, this compensation was performed by taking

into account the needs of the actual experiment where the expert adjusted the compensation

parameters to identify interested cell populations using 2D scatter plots. As a result, we

could not compare our results mathematically, because our algorithm evaluates the fluores-

cence intensities on all channels simultaneously. Nevertheless we have includeed all manual

compensation results along with our algorithm results to compare the appearance of the cell

sub-groups. Finally, we have compensated the datasets with both schemes described in the

algorithm block diagram in Figure 5.2. We have clustered the dataset and determined a trans-

formation matrix that diagonalizes the clusters over gamma-normalized values according to

scheme 1, and over raw values according to scheme 2. After the diagonalization, we have

performed a final clustering to improve the clustering accuracy.

The three most overlapping fluorochromes in terms of their emission spectra were

Pacific Blue, AmCyan and FITC. We used these three fluorochrome channels to test our algo-

rithm in the first scenario. In Figure 5.8, the uncompensated dataset on gamma normalization

scale is presented. While, manual compensation result for these three channels is shown

in Figure 5.9. Note that manual compensation results are clearly inaccurate for these three

channels, even tough manually compensated values were obtained using all 8-colors. The

deleterious effects of the other channels’ compensation parameters can be observed in these

69



three channels. This is caused by the difficulty of proper multi-color compensation using

manual techniques. The results of our proposed method for both schemes are presented in

Figures 5.10 and 5.11. Despite the fact that these are the most overlapping channels, in both

cases, our algorithm successfully determines the cell sub-groups and align them over the non-

discriminant channels.

In the second scenario, we chose the three channels corresponding to fluorochromes

emission spectra overlapped minimally (Pacific Blue, APC-Cy7 and PE). We have applied

our algorithm again using both schemes. Note that both uncompensated and manual compen-

sated data looks good as expected in Figures 5.12 and 5.13 respectively. Since the spillover

between these channels is minimal using scheme 1, the transformation matrix obtained over

gamma normalized data is quite similar in the both uncompensated and manual compensated

data since the clusters are well-placed and already close to being orthogonal in the gamma

normalized space (Figure 5.14). However, using scheme 2 where the transformation matrix is

obtained from raw data, the results are problematic: As seen from Figure 5.15, some clusters

appear to have undergone undesired deformations. This is caused by the same phenomenon

observed in the toy dataset, where the joint diagonalization algorithm could not converge to

a proper transformation matrix. Poor convergence of the joint diagonalization on the linear

data scale can be attributed to the presence of cells with extensively high fluorescence val-

ues that dominate the covariance calculations. For this reason, we have used our proposed

algorithm under scheme 1 for a full 8-color data compensation in the final scenario. Figures

5.16 and5.17 present all pairwise 2D scatter plots of the uncompensated data and manual

compensated data in all channels, respectively. As discussed before, serious short comings of

the manual compensation in multi-color flow cytometry are visible Figure 5.17, evidenced by

strong residual correlations with cells positioned along the main diagonal (e.g. APC-Cy7-A

and Pacific Blue-A Scatter Plot). We have presented the automated compensation results with

identified cell sub-groups in Figure 5.18. The results show that our algorithm can identify the

cell-sub groups when the statistical information is sufficient as before, and by joint diagonal-

ization of these clusters, proper compensation can be achieved for multi-color flow cytometry

data.
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Figure 5.8. Scatter plots of the most overlapping channels (uncompensated)
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Figure 5.9. Scatter plots of the most overlapping channels (manually compensated)

71



Pacific Blue-A

AmCyan-A FITC

1

1 1

0

1

1

0

1

0

1

1

0

1

Figure 5.10. Scatter plots of the most overlapping channels (compensated according to

scheme 1)
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Figure 5.11. Scatter plots of the most overlapping channels (compensated according to

sheme 2)
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Figure 5.12. Scatter plots of the least overlapping channels (uncompensated)
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Figure 5.13. Scatter plots of the least overlapping channels (manual compensated)
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Figure 5.14. Scatter plots of the least overlapping channels (compensated according to

scheme 1)
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Figure 5.15. Scatter plots of the least overlapping channels (compensated according to

scheme 2)
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Figure 5.16. Pairwise scatter plots of the uncompensated dataset after gamma normal-

ization. All values are within the unit interval.
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Figure 5.17. Pairwise scatter plots of the manually compensated dataset
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Figure 5.18. Pairwise scatter plots of automatically compensated dataset with the iden-

tified cell sub-groups. In total, three cell subgroups were identified, indi-

cated by the red, green and blue colors respectively.
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We have applied the proposed method to another real multi-color flow dataset ob-

tained from the Flow Repository Database, too (Repository ID: FR-FCM-ZZ6B, Craig et al.,

2014) designed to distinguish germinal B-cell lymphoma from reactive lymphoid tissue. In

particular, we chose the datasets LNA31 and LNA77. The LNA31 data was obtained from

a healthy subject and the LNA77 data was obtained from a subject who had lymphoma. All

experiments were performed using 8 fluorochromes to stain the biomarker: anti-kappa, anti-

lambda, CD19, CD20, CD10, CD5, CD38 and CD45. Both datasets contain only lymphocyte

populations.

In accordance with the aim of the experiment, the authors label germinal B-cell lym-

phoma cells in a multi-step procedure. First, they label CD10 positive cells to identify ger-

minal center (GC) reaction. Then, they investigate the expression of typical B-cell markers

(?). In contrast, we have applied our algorithm on the full dataset to label all cell subgroups.

In addition, manually compensation was performed by the authors to suit the needs of the ex-

periment (Craig et al., 2014). As a result, proper manual compensation for all fluorochromes

cannot be claimed. For comparison purposes,we have included all manual compensation re-

sults as provided by the dataset along with our algorithm results to compare the appearance

of the cell sub-groups.

Figure 5.19 and Figure 5.20 represents the uncompensated and manually compensated

pairwise scatter plots of the LNA31 dataset in gamma normalization scale. Our algorithm

results along with the identified cell sub groups are illustrated in Figure 5.20. Our algorithm

identified four distinct cell subgroups with proper alignment. Algorithm results can best be

seen in the following scatter plots: PE/FITC, PE-Cy7/PE, PerCp-Cy5.5/PE.

Figure 5.22 ande Figure 5.23 show the uncompensated and manually compensated

intensity values of the LNA77 dataset in gamma normalization scale respectively. Figure 5.24

represents the cell subgroups, three in this case, and the corresponding cell placement. In

some scatter plots, especially in PerCp-Cy5.5 channel, it appears that the blue group may in

fact include two cell subgroups. However, our clustering algorithm can not find statistical

evidence to divide the blue population into two groups, that one the left as one single cell

cluster.
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Figure 5.19. Pairwise scatter plots of the uncompensated LNA31 dataset after gamma

normalization. All values are within the unit interval.
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Figure 5.20. Pairwise scatter plots of the manually compensated LNA31 dataset after

gamma normalization. All values are within the unit interval.
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Figure 5.21. Pairwise scatter plots of automatically compensated LNA31 dataset with

the identified cell sub-groups. In total, four cell subgroups were identified,

indicated by the red, green, blue and purple colors respectively.
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Figure 5.22. Pairwise scatter plots of the uncompensated LNA77 dataset after gamma

normalization. All values are within the unit interval
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Figure 5.23. Pairwise scatter plots of the manually compensated LNA77 dataset after

gamma normalization. All values are within the unit interval.
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Figure 5.24. Pairwise scatter plots of automatically compensated LNA77 dataset with

the identified cell sub-groups. In total, three cell subgroups were identified,

indicated by the red, green and blue colors respectively.
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5.3. Discussion

In this study, we have developed a joint automatic compensation and gating algo-

rithm for multi-color flow cytometry. The algorithm begins by clustering multi-color flow

cytometry data using annealing-based model-free expectation maximization algorithm. Joint

diagonalization of these clusters calculates the compensation matrix. The compensated data

is clustered one final time to revise the initial cell sub groups.

We have tested our algorithm on three real 8-color flow cytometry dataset. In the

first one we have tested our algorithm on three different scenarios: intensity data from three

fluorochrome channels with the largest overlap in their emission spectra, intensity data from

another set of three fluorochrome channels with the least spectral overlap, and the full 8-

channel data. The results show that our algorithm successfully performed gating and com-

pensation in all three cases. It identified distinct cell sub populations and aligned them over

non-differentiating fluorochromes. Interestingly, in our experiments, automatic compensation

using joint diagonalization was more successful on gamma-normalized data than on raw in-

tensities, in spite of the fact that gamma normalization induces substantial non-linearity on the

intensities. This suggest that the linearity of the original compensation problem may not al-

ways hold, potentially due to inherent non-linearities in the flow cytometry detector circuitry.

Additional colors may also be exacerbating this situation. In addition, the final re-clustering

of the data following automatic compensation was of little consequence as the fraction of all

cells that were assigned to different clusters than original was less than 0.5%

In the second and third datasets, we have performed our algorithm on full 8-color

intensity data and our algorithm identified distinct cell subgroups and aligned them properly.

It should be noted that the evaluation of the proposed method was carried out over

lymphocytes, that are a lower intensity cell group, and are therefore expected to possess uncor-

related fluorochrome intensities when properly compensated. The performance of the method

described here on the other cells, such as monocytes, is currently under investigation. The

performance of the algorithm can be increased by the adaptation of the update matrix with

prior fluorochrome information.
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CHAPTER 6

CONCLUSION

This thesis presents an automated approach for compensation and gating of multi-color

flow cytometry data. The methods developed to this end include two clustering algorithms for

automated gating and one joint diagonalization procedure for automated compensation. The

respective performances of the proposed methods were evaluated on synthetically created

datasets as well as real multi-color flow cytometry datasets.

We have started by developing model-free expectation-maximization (MFEM) clus-

tering for automatic gating in Chapter 3. Model-free expectation-maximization is a binary

divisive clustering for low dimensional datasets. It determines the number of clusters and

respective clusters for each sample without any model assumption. The performance of the

clustering algorithm was measured using f-measure, and the results show that model-free

expectation-maximization clustering identifies the number of clusters and assigns samples to

the true clusters with remarkable accuracy, especially in low dimensional data. We have also

compared our algorithm results by applying conventional expectation-maximization (EM)

in the same manner. The results show that model-free expectation-maximization clustering

was better than conventional expectation-maximization in determining the number of clus-

ters. Clustering accuracy results were very close when the number of clusters were esti-

mated the same in both model-free expectation-maximization and conventional expectation-

maximization. The algorithm only missed small clusters with too few samples as there was lit-

tle statistical evidence for their existence. Furthermore, model-free expectation-maximization

clustering was more successful for low dimensional datasets. To overcome this problem, we

have combined model-free expectation-maximization clustering with a simulated annealing

approach and developed the annealing-based model-free expectation-maximization clustering

(ABMFEM), described in Chapter 4.

Simulated annealing is a powerful optimization technique to find the global minimum

of a function. Accordingly, we began annealing-based model-free expectation-maximization

clustering with a large reference set size that produced flexible decision regions, and decreased

the number of samples in the reference set in each iteration to find optimal reference set

size while estimating posterior probabilities. The annealing based approach achieved better

clustering results on both low and high dimensional datasets. The experiments further showed

that small clusters were still at risk of being missed. This indicates that further research is

required to identify clusters with few samples, especially in cases when such clusters may

86



potentially carry biological or clinical significance.

Finally, we have developed an automatic compensation procedure that identifies the

cell sub groups and jointly diagonalizes them in Chapter 5. The algorithm begins by clus-

tering multi-color flow cytometry data using annealing-based model-free expectation maxi-

mization algorithm. To remove the spillover between fluorescence channels, the algorithm

finds a transformation matrix that makes each cluster orthogonal over all channels using joint

diagonalization with non-orthogonal transformation (FFDIAG) algorithm. The compensated

data is clustered one final time to revise the initial cell sub groups. We have also introduced

the gamma normalization for transformation of raw intensity measurements as it provides full

automation in data transformation and achieves an optimal use of the dynamic range of val-

ues. In experiments, we have used only the lymphocyte population of the real multi-color

flow cytometry dataset since they have lower autofluorescence compared to other cell types

and this suits our orthogonality premise for compensation.

We have tested our algorithm on both synthetically created and real multi-color flow

cytometry data in different scenarios and schemes. Firstly, we have identified the three

flurochrome channels overlapping maximally in their emission spectra and clustered them

on the gamma normalized scale. We have used two different schemes in the orthogonaliza-

tion: The first one diagonalized cell clusters on gamma normalized scale and the other one

orthogonalized the clusters on raw intensity linear domain. Altough these channels over-

lapped with each other substantially, our algorithm could compensate the data in both scales.

In the second scenario, we have identified the three channels with minimal overlap and ap-

plied the same procedure again with two schemes. Since the spectral leakage between these

fluorochrome channels was small, both the uncompensated and the compensated data look

properly compensated. Our compensation algorithm was also successful when we calculated

the transformation matrix on the gamma normalized scale. However, calculating the trans-

formation matrix over raw data caused deformations on the identified clusters, as the joint

diagonalization algorithm could not produce a matrix that minimized non orthogonal ele-

ments of the covariance matrices of the cell clusters due to large intensity values. In the last

scenario, we tested our algorithm using scheme 1 on the full 8-color flow cytometry data.

The results were satisfactory as all clusters were placed well and aligned to the others over

the non-discriminating fluorescence channels. On the other hand, we could not compare our

results with manual compensation, because in the flow cytometry experiment, the expert com-

pensated the data according to the experiment needs to uncover interested cell populations,

leaving an interested channels properly compensated.

The body of research summarized above describes a way for automatic compensation

and gating of multi-color flow cytometry data. One of the problems in this study is identifica-

tion of small cell groups with few samples. From a statistical standpoint, it is not surprising
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that such small clusters are missed due to insufficient representation within the overall dataset.

However, in applications where small clusters are of particular significance, additional mea-

sures are to be taken so that clusters with small representation are also recognized as such.

The other problem is automated compensation of the cell types whose autofluorescence is

greater than lymphocytes. The performance of the method described here on the other cells,

such as monocytes, can be studied further to fill in between the major research components

presented in this dissertation
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