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Abstract: This paper discusses simulations of a control scheme based on 
locally sparse coded networks (CMACs) for a novel previously proposed 
continuously variable transmission (CVT), a hybrid continuously variable 
power split transmission (CVPST) (Osdemir and Schueller, 2002). Automotive 
transmissions match the speed and the torque of the power source to the speed 
and torque requirements of the load. Properly designed CVTs have shown 
potential to improve efficiency and performance. The main advantage of 
CMACs is fast computation because of their simple operational principles. 
Simulation results have shown that memory contents either reach a stable limit 
cycle or an attractor based on the selection of network parameters and the 
training method. Both online and offline training are possible.  
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1 Introduction 

Interest in artificial neural networks have been growing in various fields of engineering as 
a result of theoretical development and the success of applications. Researchers have 
proposed many mathematical models of neural networks based on the function of 
biological neurons and their interconnections. The cerebellar model articulation controller 
(CMAC) was inspired by knowledge of the function of the human cerebellum. A 
theoretical model was used to explain the information processing characteristics of the 
cerebellum. David Marr in 1969 in Great Britain and James S. Albus in 1971 in the USA 
developed this model (Albus, 1981). It was a model of the structure and functionality of 
the various cells and fibres in the cerebellum. CMAC is a neural network architecture. 
Basically, a CMAC computes the desired output by taking inputs as an address to refer to 
a memory where the weights are stored. CMACs estimate a relationship between the input 
and output using supervised training techniques. 
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As for the transmissions, contemporary transmissions are comprised of either 
mechanical, hydrostatic, torque converter components, or a combination thereof. 
Mechanical transmissions, which form the basis of an earlier work (Ozdemir and Schueller, 
2002), is the most efficient transmission, making it indispensable in cars and other 
machinery. It has been shown that CVTs can be successfully used in small and medium-
size cars. It has also been shown that a CVT mechanism may be improved when the 
transmission contains multiple power flow paths, which are optimised for a given range of 
vehicle speeds. When a power split mechanism is combined with a CVT transmission, the 
new power split CVT has been proved to be not only a viable alternative to an ordinary 
CVT but also an improved version in performance (Mucino, 1997; Vahapzadeh and Linzell, 
1991). Ozdemir et al. (2002) illustrated that a combination of a power recirculation, power 
split, and a regular CVT mechanism in a transmission box would refine the acceleration 
characteristics of a vehicle and enable a car to move even at creeping speeds, and achieve 
zero vehicle speed with an inherent clutch, characteristic to a recirculation design. A 
continuously variable power split transmission (CVPST) allows an engine to run over a 
range of speeds and loads independent of the speed and torque requirements placed on 
the wheels by the vehicle and the driver. An engine can produce a broad range of torque 
at any given speed demanded, or a broad range of engine speeds for any given torque 
demand. Because the CVPST allows an engine to run at this most efficient point virtually 
independent of the vehicle speed, a CVPST equipped vehicle may yield substantial fuel 
economy benefits when compared to a conventional transmission offering only a limited 
number of input/output ratios. The fact that the performance of a CVPST-equipped vehicle 
may be optimised means enhancement of the transmission unit as a whole. 

The efficient solution of the control problem using conventional control techniques 
would require a thorough knowledge of the system behaviour, translated into a very 
accurate nonlinear mathematical model, which is typically very hard to obtain (Cembrano 
et al., 1997). Neural network control schemes are suited to the control problem. In this 
case the approximation ability and learning capabilities make neural networks good 
alternatives. Instead of generating a complicated mathematical model of the system, a 
relationship between the input and the output is evaluated by the neural networks. The 
CMAC neural network has the advantage of much faster convergence and online learning 
ability than the other networks (Cembrano et al., 1997).  

In recent years, there have been numerous studies aimed at improving CVTs and the 
engine as a single power unit. Some of these have only dealt with individual component 
analyses as design enhancements, such as belt configurations, material selection, 
hydraulic actuation on CVT ratio selection, etc., which are outside the scope of this paper. 
The author has focused on the control aspects of such drive systems. One such work 
(Shen Shuiwen et al., 2001) considered a hybrid driveline concept. So as to eliminate 
engine speed fluctuations in transient situations, an additional flywheel was added for 
optimal fuel economy without any restrictions on the driveability. Due to system 
uncertainties and unpredictable load conditions, a nonlinear robust controller was 
proposed. In spite of the fact that a fuel saving was reported, a relatively accurate system 
model has yet to be found. In another fuel-economy oriented control study (Pfiffner et al., 
2003), similar control policies were developed for transient regimes based on an 
optimisation software package. Optimum operating conditions were analysed and 
formulated based on the optimal control theory, which again necessitated explicit 
expressions of the system dynamics.  
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2 CMACs 

The CMAC neural network, based on cerebellum’s neuromuscular control, is basically a 
nonlinear lookup table technique which maps n-dimensional input to a corresponding 
output. The CMAC was first proposed by Albus (1971, 1975a, 1975b) and since then, it  
has been modified and improved. These studies focused on the development of 
algorithms  (Abdelhameed Magdy et al., 2002; Hsu Yuan et al., 2002; Commuri and Lewis, 
1997), improvements of CMAC structure, and applications (Cembrano et al., 1997; Larsen 
et al.,1995; Kim et al., 2002; Pan et al., 1996).  

Lin and Chiang (1997) described the CMAC technique using a mathematical 
formulation and used this  formulation to study the CMAC’s convergence properties. Both 
information retrieval and learning rules are described by algebraic equations in a matrix 
form. Convergence characteristics and learning behaviours for the CMAC with and 
without hashing are investigated with the use of these equations. Thompson and Kwon 
(1995) studied the sequential neighbourhood training and random training techniques for 
CMACs. These techniques were used to generate mathematical functions. In the 
neighbourhood sequential training method, a strategy was devised for selecting points in 
the input space which would train CMAC systems in the mo st rapid manner. The random 
training method was found to converge on the training function with the greatest 
precision, although it requires longer training periods than the neighbourhood sequential 
training method. Commuri and Lewis (1997) developed novel weight update laws that 
guarantee the stability of the closed-loop system. The passivity properties of the CMAC 
under the specified tuning laws are examined and the relationship between passivity and 
closed-loop stability is derived. Abdelhameed et al. (2002) showed that the CMAC-based 
controller causes instability after a long period of real-time runs, whereby a new learning 
algorithm was proposed. They used their controller for the trajectory tracking control of a 
piezoelectric actuated tool post. The performance of the proposed controller is compared 
with conventional controllers. The experimental results showed that the performance of 
the CMAC-based controller using the proposed learning algorithm is stable and more 
effective than that of the conventional controllers.  

3 The CMAC network 

The detailed knowledge of the structure and the function of the various cell and fibre 
types in the cerebellum make it possible to form mathematical models to explain its 
information processing characteristics. Albus produced the version illustrated in Figure 1 
(Albus, 1981). 

The CMAC, as a controller, computes control values by referring to a memory look-up 
table where those control values are stored (Albus, 1975a). The memory table basically 
stores the relationship between the input and output or the control function. In 
comparison to other neural networks, CMAC has the advantage of very fast learning and 
the unique property of quickly training certain areas of memory without affecting the 
whole memory structure. Hence, this network is also known as the local sparse coding 
networks.  
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Figure 1 A schematic representation of CMAC (Albus, 1981). 

The network architecture of the CMAC is illustrated in Figure 2. The input data of 
every state variable are quantised into discrete regions and mapped on to different 
memory areas. Each indexed block memory, called a hypercube, contains the input data of 
one quantised discrete state. The association memory mapping is implemented through 
hypercube to the actual memo ry as the mapping function of table look-up model. In 
addition to the association memory mapping function, the CMAC gives the feedback of 
the error of output to adjust the actual memory contents (Albus, 1981). 

The output of this system is the summation of the contents of actual memory that is 
mapped by effective hypercubes. The error caused by the difference between the output 
summation and the desired output is processed as the feedback value for adjusting the 
contents of actual memory. The learning efficiency of the CMAC system depends largely 
on the division of the hypercube. Its technique can be explained with reference to 
Figure 3. 

This example has two state variables (s1 and s2) with each quantised into four discrete 
regions, called blocks. For instance, s1 can be divided into A, B, C and D and s2 can be 
divided into a, b, c and d. Areas formed by quantised regions, named Bb, Gg, Kk, Oo are 
called hypercubes in the input state of (s1, s2) = (7,7). If the quantis ation for each variable 
is shifted by one element, different hypercubes will be obtained. 
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Figure 2 The learning architecture of CMAC (Albus, 1975a). 

 

For example, E, F, G, H for s1 and e, f, g, h for s2 are shifted regions. Ee, Ff, etc. are new 
hypercubes from the shifted regions. Each state is covered by Ne different hypercubes, 
where Ne is the number of elements in a complete block. There are 64 ( = 42 × 4 ) 
hypercubes in this example. Each hypercube is taken as the corresponding address of the 
actual memory element. And the data of each state will be distributively stored in memory 
elements associated with hypercubes that cover this state. Assume aj represents an 
association vector of jth input space (j = 1, 2,3 ... Ns) where Ns indicates the total number 
of input states. 99th input state (state (7, 7)) is used to explain the actual memory how to 
be mapped by an association memory. Figure 3 shows the state (7, 7) is mapped by the 
hypercubes of Bb,Gg,Kk and Oo. If we give an index value for each mapped actual 
memory unit, then the state (7, 7) can be mapped to the memory locations of 6, 27, 43 and 
59. We can use an association vector shown as Equation (2) to represent the mapping 
information. 

                       a 6            a 27           a 43         a 59 

a 99 = [ 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . .0 ] 1 x 64 (1) 

                       Bb          Gg          Kk           Oo 

This is a 1 × 64 vector because there are 64 hypercubes needed (i.e. 64 actual memory 
units are used) in this case. In this vector, four 1s represent the mapped actual memory 
units that are used under this input state, and other 0s represent the mapped actual 
memory units are not used.  
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Therefore, the locations of 6, 27, 43 and 59 are recorded as 1 and everything else is 
recorded as 0. The actual output y  99 of input state (7, 7) can be represented as: 

y 99 = a 99 . W (2) 

where W is the weight vector of actual memory contents. 

 

Figure 3 Block division of CMAC for a two-variable example. 

4 CVPSTs 

The following hybrid power split-power recirculation (PS-PR) gearbox (Ozdemir and 
Schueller, 2002) is  intended to offer the advantages of both power split and power 
recirculation mechanisms. It has four distinguishable gears, one being the reverse gear. 
The reverse and drive 1 are governed by power recirculation equations. In this mode, the 
vehicle can back up, achieve the so-called ‘geared neutral’ phenomenon, and set the 
vehicle in forward motion. A characteristic power split CVT is shown in Figure 4. 
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Figure 4 A generic power split CVT. 

 
At a designated speed, which might be called first crossover, the motor vehicle 

switches to drive 2, or split mode. This mode allows the driver to achieve quicker 
acceleration, and to achieve relatively higher speeds. In this mode, all of the power is 
carried through the system’s two belt units. The lessening of torques at high speeds 
permit the running of torques along continuously variable units. This feature is the key to 
rapid acceleration. 

Further down the road, at even higher speeds, a third drive has been provided. At a 
second designated speed, another switch occurs. This shift from drive 2 to drive 3 might 
be called the second crossover. In this mode, to take advantage of ever-smaller torques, 
and to eliminate the inertia of masses of rotating gears, the path is now a single line, and 
no power split is needed. 

The proposed design, as shown in Figure 5 in connection with Table 1, is the 
combination of a recirculation and a split design. The power is input into the system from 
the lower-right corner of the picture and output from the upper-left corner. The design 
contains two CVUs or two belts, and is composed of three stages. In each stage, the 
power follows a different path, in accordance with the control and the vehicle speed. The 
caption explains the symbols in the figure.  
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Figure 5 The CVPST to be controlled (Ozdemir and Schueller, 2002). C1..C7 : clutches; CVU: 
continuously variable units;1, 2, 17, 18: variable pulleys; 3, 4..15, 16 : gears. 

Table 1 Clutch layout table. 
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5 Inverse kinematics control with CMAC 

The inverse kinematics control problem is to find quickly each individual input speed and 
requested acceleration. These entities could be calculated by the formulations. But rather 
than using formulations, CMAC is used here to evaluate what the input speed into the 
CVPST ought to be, given the desired vehicle speed. The task is motion control (point to 
point in the defined workspace). In Figure 6 Θ represents the accelerator pedal angle 
measured from a reference point. Thus not only the angular displacement but also the rate 
of change of the pedal is taken into consideration. CMACs output the necessary input 
angular speed and its rate of change into the CVPSTs by definition. The rate of change in 
the angular speed is provided by a continuously variable unit, in this case a belt drive. 
Now the problem is converted into the selection of input parameters based on the desired 
vehicle speed and a constant engine rpm. CMAC is trained in a supervised manner to find 
the training data set; the geometric equations can be used or approximate training values 
might be provided based on experience.  

 

 

Figure 6 CMAC network for inverse kinematics of two-link manipulator. 

 

The problem becomes much more complex as the number of DOF increases. The 
standard methodology for calculating the inverse kinematics is training the neural network 
offline for possible data to obtain solutions. Because of the generalis ation property, 
neural networks can learn the associated patterns and recall the learned patterns. The 
trained network is then used to achieve the desired movements. This technique therefore 
involves two steps of operation as training phase and performing phase. From another 
point of view the advantage of using neural network for control problems is that neural 
networks have the ability of online learning and adaptive capabilities. The inverse 
kinematics of the proposed control scheme can be seen in Figure 7.  

Initially, all the weights are equal to zero. The outputs of the CMAC are the input 
angular speed and its rate of change which are inputs to the CVPST. The error signals are 
calculated as the difference between the desired and the actual vehicle dynamic 
parameters. It is shown that the CVPST with CMAC can respond to any desired speed 
and acceleration within the working range.  
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Figure 7 Block diagram for online learning of inverse kinematics of two-DOF manipulator. 

6 Robot arm testbed 

Before crediting any simulations, the CMAC code was tested on a realisable physical 
model. A robotic manipulator was used for this test. Even before the construction of the 
manipulator, simulations for the arm control were quite successful. On the test bench in 
Figure 9, CMAC was trained offline, and the training data were produced using the 
geometry of the two-link manipulator.  

The desired x, y positions of the end effector are applied to the CMAC network, as in 
Figure 8. The network parameters of the CMAC are: 

generalis ation width = 64 
total number of layers = 64 
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learning rate = 0.5 
The desired xd and yd coordinates of the end effector are selected as: 

xd = [300 100 400],    yd = [50 250 100]. 
The desired end effector positions are applied to CMAC network. The x and y 

positions of the end effector are shown in Figure 10, and the corresponding joint angle 
trajectories are shown in Figure 11. 

 
 

 

Figure 8 CMAC network for inverse kinematics of two-link manipulator. 

 

 

 

Figure 9 Experimental hardware set-up. 
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Figure 10 Simulation of the actual positions of the end effector of the two-linked robot. 

 

Figure 11 Joint angle trajectories of the two-linked robot. 
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Thirty-nine iterations are needed to reach the desired end-effector positions. The 
CMAC can be a fast solution for the inverse kinematics problem in control applications 
online. On the other hand, CMAC is trained offline even faster.  

The network takes just seconds to train offline, and, even though the manipulator 
extends to the desired location with no errors in simulations, errors have occurred in 
hardware implementations to control a 2-DOF arm (Figure 9). This is not due to the code 
but rather the experimental set-up which was meant to be simple. For the feasibility of the 
CMAC, the whole control set-up was built in an open loop. No error correction is thus 
provided. For a given limb , angular misplacements did not exceed an absolute value of 10 
degrees. Yet the CMAC algorithm is proven to work in a network topology, shown in 
Figure 8, which is the same for CVPST simulations, as in Figure 6. 

7 Simulations to control CVPST with CMACs 

The training data are selected in three different ways. First in a random fashion. Second, 
the neighbourhood sequential training technique is used. Finally, the training points are 
selected within the symmetry of the workspace. Figures 12, 13 and 14 present the 
performance of each mentioned training schemes. In Figure 12 the random training 
performance is seen. Generalis ation width and the total number of layers are equal to 164. 
Memory converges after 10 cycles. In Figure 13 the neighbourhood sequential training 
method’s performance is seen where the generalis ation width and the total number of 
layers are 44. Finally in Figure 14 the output errors of the network are seen. Here the 
generalis ation width and total number of layers are equal to 96. The desired numerical data 
are as follows: 

ω d = [-33 -19 -23 -10  20 24  33 ]  

ω& d = [  .1 .65 . 25  .20 .3  .15  .7 ] 

 

Figure 12 The output error for the random trained network. 
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Figure 13 The output error for the sequentially trained network. 

 

Figure 14 The output error for the symmetric trained network. 

Tables 2 and 3 show a set of typical memory convergence graphs. The memory 
contents in Table 2 attain a stable limit cycle. In this training examp le, no hashing was 
used, and quite a small mean error was obtained. Table 3 also shows good error 
characteristics with no increase in memory, and again no hashing was used. In between 
these two extremes, various results were obtained with different training parameters.  



 
   

 
   

   

 

   

   118 S. Ozdemir    
 

    
 
 

   

   
 

   

   

 

   

       

Table 2 For the given CMAC parameters, memory contents reach a limit cycle.  

 

 
 

L W a 
Training for 

CVPST 
Maximum Error Mean Error 

30 30 1  0.0329 0.0146 

Required Memory Locations Hash Size Convergence  

390 No hashing Periodical 

 
Table 3 Another set of CMAC parameters, and an attractor results. 

 

 
 

L w a Training for CVPST Maximum Error Mean Error 

36 36 1  0.1263 0.0660 

Required Memory Locations Hash Size Convergence  

396 No hashing  Constant 
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8 Conclusions  

Throughout the last decade various neural network architectures have been applied to 
numerous control applications. This has enabled intelligent control algorithms to take 
over the stationary control schemes that would not respond to any change in system 
dynamics. Problems with dynamic variations have been conventionally dealt with using 
rather robust control. One such application domain has been the CVT-equipped 
transmissions. An online learning intelligent model would not only update its rules of 
execution, provided that it is an inductive inference machine in varying situations, but 
also remove the necessity of proposing the exact system dynamics. One such alternative 
is the implementation of CMACs. 

The main advantage of a CMAC over other neural networks is its fast computation, 
which results from the fact that it is more of a table look-up technique and less of a 
network. In the simulations for the test bed, and CVPST, it was seen that sequential 
neighbourhood training is a fast and efficient method for tackling the problem of inverse 
kinematics. Also the network parameters, such as generalis ation width and total number of 
layers, are critical points. The optimum results are obtained when the generalisation width 
is in the neighbourhood of the total number of layers. And if the distance between the two 
training points is equal to the generalis ation width, the CMAC produces a smooth curve. 
Also the other advantage of sequential neighbourhood training is the lower memory 
requirements. By using hash coding, the required memory can be decreased dramatically. 
As a result , for inverse kinematics calculations, a sequentially neighbourhood trained 
CMAC network's performance is a good alternative. In the test bed, a two degrees of 
freedom manipulator was analysed. In the case of many degrees of freedom systems , the 
analytic solutions are more complicated, and sometimes there are no formulations for the 
inverse kinematics. In such situations, one has to brave the complicated iterations. The 
ease with which the network was trained without a mathematical model was also shown. 

During the analysis of CMAC network and hardware implementation, MATLAB 
software was used on a Pentium III PC. The simple nature of CMACs can be an advantage 
for the application areas. For instance, instead of a PC interface the same work could have 
been realised with micro controllers. 

Any future study ought to deal with effective hash coding techniques where a 
demand for a higher resolution would require more memory, while still minding the hash 
collisions. Stability is another subject for CMACs. Some adaptive algorithms are 
developed for stability problems of CMACs. These adaptive algorithms need to be 
employed to state stability margins for any given work. This paper discussed only the 
simulations. Another test bed, this time with a scaled CVPST, should be tested for further 
suitability.  
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