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Abstract—Identification of seismic activity levels in coal
mines is important to avoid accidents such as rockburst.
Creating an early warning system that can save lives requires an
automated way of predicting. This study proposes a prediction
algorithm for the AAIA′16 Data Mining Challenge: Predicting
Dangerous Seismic Events in Active Coal Mines that is based on
transient activity features along with average indicators eval-
uated by a Fisher’s linear discriminant analysis. Performance
evaluation experiments on the training datasets revealed an
accuracy level of around 0.9438 while the performance on the
test dataset was at a level of 0.9297. These results suggest that
the proposed approach achieves high accuracy in predicting
danger seismic events while maintaining low complexity.

I. INTRODUCTION

ONE OF the most important subjects in coal mining is

to detect specific gas emissions and seismic activity

rates. The miners can suddenly find themselves in dan-

gerous situations due to methane explosions or rockburst

[1]. The most common accident cause in coal mines are

cave-ins (roof, rock and coal) which account for 70.6 of

all injuries [2]. Safety of miners’ lives substantially depends

on an early warning mechanism that can potentially be

constructed using specific alert measurements for seismic

activities as well as physical conditions of the mine. In

order to create such an early warning mechanism, warning

signals can be triggered if the measured values or energy

levels, taken measurement from reference points of the

mine, exceed a preset hazard threshold. However, seismic

activity datasets that are observed from coal mines are very

high dimensional and hard to process due to the fact that

they are measured from a wide range of points and for

a long duration. Since the dataset is very complex and

high dimensional, expert knowledge-based systems can fail

for foresight of the dangerous activities. The automation of

early warning systems in coal mines has vital importance to

prevent interpretation differences between mining experts

and make analysis more rapid.

In the literature, there are several automated methods

that have been proposed to recognize hazardous seismic

activity patterns. Neural networks are the most popular

method for prediction of seismic events in coal mines

[3]. Identification of neural network parameters and layer

numbers, however, is complicated, and entails substantial

cost because of its "black-box" structure [4]. As a simpler

and practical alternative, we propose a hazardous seismic

ebent activity prediction method based on Fisher′s Linear

Discriminant Analysis [5] that operates on an encoding

of transient seismic activity are on 24 hour period along

with average seismic activity parameters and conventional

risk assessment methods. Performance evaluation of the

method on the AAIA′16 Data Mining Challenge Dataset

suggest that the approach offers accurate prediction of

hazardous seismic activity around %92.97 levels.

In the next section, we provide a detailed description

of the dataset and explain the proposed approach. In the

third section, we present performance evaluation results of

our method on both initial training dataset as well as the

additional training datasets. At the conclusion section, we

summarize our algorithm and discuss the results.

II. MATERIAL AND METHODS

The dataset used in this study was provided by Research

and Development Centre EMAG for AAIA′16 Data Mining

Challenge: Predicting Dangerous Seismic Events in Coal

Mines. The dataset consists of total energy measurements

for 24 hour period from different sensors and the counts

for seismic bumps perceived at longwalls. In addition,

the dataset contains hourly readings for 24 consecutive

hours that are related with the most recent assessments

of the conditions determined by mining experts. In the

dataset each sample has one ID of the main working site

where the measurements were taken and 540 features

which contains 12 average risk parameters and 528

risk assessments measures. Finally, the respective labels

("normal" or "warning") are provided for each individual

sample to assist on the training.

We propose a method that evaluates the average risk

parameters along with the risk assessment measures sep-

arately from the hourly measurements of the provided

parameters over a 24-hour period for the prediction task at

hand. To this end, we extracted the hourly measurements of

the 22 different parameters provided in the training dataset
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Fig. 1. Block Diagram of the Proposed Method

in indices from 14 through 541 and performed a line fit to

determine the parameters (ai ,bi ) such that the fit error

1

2

24∑

h=1

(pi ,h − (ai h +bi ))2 (1)

is minimal for each parameter pi with hourly measure-

ments pi ,h , for i = 1,2, . . . ,22. This resulted in a time evolu-

tion dataset with 44 features. To further refine this dataset,

we have calculated the Kolmogorov-Smirnov statistic [6]

between the empirical cumulative probability distributions

of the two groups over each of the 44 time evolution

parameters (ai ,bi ) for i = 1,2, . . . ,22, and ranked the pa-

rameters in the order of decreasing statistic value, with

the understanding that the larger values of the statistic

indicate more pronounced separation between the groups.

Next, we have carried out Fisher′s linear discriminant

analysis [7] on the top ranked 1,2, . . . ,44 time evolu-

tion parameters, and calculated the area under the re-

sulting receiver operating characteristics curve obtained

on the original training dataset and the associated la-

bels. This analysis identified 39 time evolution parame-

ters with the greatest Kolmogorov-Smirnov statistic pro-

viding the highest area under the curve on the original

training dataset, that were then collected to form the
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calculated time evolution dataset containing the transient

features.

The final prediction was obtained by merging the average

risk parameters and the risk assessment measures provided

in indices 2 through 13 in the training dataset with the cal-

culated time evolution dataset, and constructing a Fisher’s

linear discriminant over the merged dataset. This entailed

calculating the average vectors and covariance matrices

µ0 =
1

ℓ0

∑

j∈J0

x j (2)

µ1 =
1

ℓ1

∑

j∈J1

x j (3)

Σ0 =
1

ℓ0 −1

∑

j∈J0

(x j −µ0)(x j −µ0)T (4)

Σ1 =
1

ℓ1 −1

∑

j∈J1

(x j −µ1)(x j −µ1)T (5)

over the parameter vectors of the merged dataset {x j } with

respect to the index sets J0 and J1 defined by

J0 = { j |y j = 0} (6)

and

J1 = { j |y j = 1} (7)

in terms of the training labels {y j } with ℓ0 = |J0| and ℓ1 =

|J1|. This allowed expressing the discriminant function f (x)

for a new parameter vector x through

f (x) = wT x (8)

with

w = (Σ0 +Σ1)−1(µ1 −µ0). (9)

As the final step of the analysis, we have identified

the parameters α and f0 to convert the values of the

discriminant function into an empirical log-likelihood ratio

for the two groups via the expression

L(x) =α( f (x)− f0) (10)

so that the collection of values {L(x j )} over the merged

training dataset {x j , y j } achieved the smallest average train-

ing errors on the two groups with respect to a threshold of 0,

or the average of the Type I and Type II training error rates,

and the corresponding empirical posterior probabilities

given by

P1(x j ) =
π1

π0e−L(x j ) +π1

(11)

satisfied
1

ℓ0 +ℓ1

ℓ0+ℓ1∑

j=1

P1(x j ) =π1 (12)

with π0 and π1 denoting the prior probabilities of the re-

spective groups in the training dataset. This was carried out

by finding the f0 value that achieved the equality above for

a specific value of α for α= 2−5,2−4.5,2−4, . . . ,25. Calculating

the errors over the resulting (α, f0) pairs identified the best

values for α and f0 for the smallest training error while

maintaining the required prior probabilities.

In the next section, we present the results that we have

obtained on different training and test dataset combina-

tions.

III. RESULTS

We have been tested our proposed method us-

ing the five different dataset and respective warning

level labels that were provided by AAIA′16 Challenge

committee. These datasets were named as: training

dataset, additional training dataset 1,additional

training dataset 2, additional training dataset 3

and additional training dataset 4. Different combi-

nations of these datasets were used to train the algorithm

and the others were used for testing its performance.

Firstly, we used the original training dataset and we

estimated the posterior probabilities for both additional

training datasets as well as the original training dataset.

The receiver operating characteristic (ROC) curves for this

trial is shown in Figure 2.

The greatest AUC was obtained on the additional train

dataset 1 at 0.9619 followed by at 0.9422 and at 0.9345 and

at 0.9088 and at 8943. Next, we merged each additional
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Fig. 2. The ROC curves when the algorithm trained by original training
dataset. Best prediction is performed on additional training dataset 1

training dataset with the original training dataset and used

the combined data to train the algorithm, and tested the

resulting prediction on all datasets. The average area under

curve (AUC) values are shown in Table I.

The area under the receiver operating characteristics

curve obtained on the test dataset was 0.9297 as reported

by the evaluation committee of the AAIA’16 Challenge when

the training data was combination of the original training

data and additional training data 1. The ROC curves are

shown in Figure 3 for each dataset.
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TABLE I
AVERAGE AREA UNDER CURVE VALUES FOR DIFFERENT TRAINING SET

COMBINATIONS

Train Data Average AUC Value

Original Train Data 0.9264±0.0240

Original Train Data , Additional Train Data 1 0.9311±0.0292

Original Train Data , Additional Train Data 2 0.9280±0.0253

Original Train Data , Additional Train Data 3 0.9298±0.0240

Original Train Data , Additional Train Data 4 0.9290±0.0224

Original Train Data ,
Additional Train Data 1, Additional Train Data 2

0.9320±0.0283

Original Train Data ,
Additional Train Data 1, Additional Train Data 3

0.9334±0.0261

Original Train Data ,
Additional Train Data 1, Additional Train Data 4

0.9337±0.0275

Original Train Data ,
Additional Train Data 2, Additional Train Data 3

0.9336±0.0250

Original Train Data ,
Additional Train Data 2, Additional Train Data 4

0.9303±0.0228

Original Train Data ,
Additional Train Data 3, Additional Train Data 4

0.9327±0.0220
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Fig. 3. The ROC curves when the algorithm was trained on the merge
of the original training dataset with the additional training dataset 1. Best
prediction performance is achieved on the additional training dataset 1

IV. CONCLUSION

In this paper, we have proposed a prediction algorithm

for dangerous seismic events in coal mines using a combi-

nation of existing risk assessment parameters, average seis-

mic energy measurements as well as hourly seismic activity

measurements and Fisher’s linear discriminant analysis.

The method fits a line to capture the seismic activity

information provided by hourly measurements and uses

the two line-fit parameters as features for the ensuing

prediction subjected to feature selection using Kolmogorov-

Smirnov statistics and area under the curve measures on the

training data. In order to produce the final predictions, we

have applied a mathematical conversion on the outputs of

the discriminant function to produce empirical posterior

probabilities that ranged between 0 and 1, indicating the

likelihood of a future seismic event. At an additional level of

complexity, we have also evaluated the performance of the

predictions subject to different training datasets, as training

datasets themselves vary in the level at which they represent

the actual prediction problem. In the performance com-

parison tests over the training data, we observed varying

accuracy levels for the different training datasets used, and

submitted the best performing configuration to the AAIA’16

challenge, that achieved an area under the curve level of

0.9297 on the test data that was withheld from the challenge

participants. The strengths of our proposed method lie

first in the manner with which the hourly seismic ac-

tivity measurements are evaluated and merged with the

average measurements as well as existing risk assessment

parameters. In addition, the simplicity of the Fisher’s linear

discriminant function offers a greater potential for gener-

alizability of the demonstrated high performance to other

seismic activity prediction cases as it minimizes the risk

for overtraining. Finally, the conversion of the prediction

results into posterior probabilities allows processing the

results in conjunction with other probabilistic insights that

one may have on the prediction problem at hand such as

site-specific conditions and associated risks no reflected in

the measurements. This also reflect the weakness of the

method proposed here as it does no take into account any

site-specific information, though this can be remedied in

future applications.
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