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Abstract: In this study, an asymptotic tracking controller is developed for an aircraft model subject to additive, state-dependent,
non-linear disturbance-like terms. Dynamic inversion technique in conjunction with robust integral of the sign of the error term is
utilised in the controller design. Compared to the previous studies, the need of acceleration measurements of the aircraft have
been removed. In addition, the proposed controller design utilises only the output of aircraft dynamics. Lyapunov based analysis
is applied to prove global asymptotic convergence of the tracking error signal. Numerical simulation results are presented to
illustrate the performance of the proposed robust controller.

1 Introduction
Obtaining an appropriate model for an unmanned aerial vehicle
(UAV) that can be used in the controller design is still an ongoing
research and to our best knowledge is a complicated problem. Most
of the time, a reliable model is unavailable due to the hard-to-
model aerodynamic effects [1]. On top of this, the flight conditions
with a slight change can effect the model parameters significantly.
External effects such as a gust or gravity can also alter the
trajectory of a UAV. From a controller design perspective, the main
problem is related to time varying parameters such as the weight of
the aircraft which obviously decreases slowly during the flight due
to the consumption of fuel. As a result, aside from some very
specific cases, the model of a UAV is commonly considered as
fully or partially uncertain in controller design. Since model and
disturbance uncertainties are inevitable for aircraft models,
controller algorithms that require minimum knowledge of system
dynamics are preferred for realistic UAV applications.

Among the control design methods commonly applied to aerial
vehicles, dynamic inversion is a special type of feedback
linearisation control technique [1, 2]. The main idea of dynamic
inversion is to transform the non-linear dynamics of the system
into a form similar to linear time invariant system via a change of
variables [3–11]. Specifically, in [3, 12], dynamic inversion was
used for stabilising and tracking problems for aircraft systems. In
[4–7], dynamic inversion-based flight control systems were
developed for autonomous small-scale helicopters. Dynamic
inversion was also utilised in quad-rotor control studies [8–10] and
in missile control systems [11]. As can be viewed from the above
work when the system dynamics is known dynamic inversion is
preferred as uncertainties in system dynamics might result in an
increase in the inversion error. To compensate for the possible
inversion error, dynamic inversion technique can be fused with
robustifying terms as in [13–16]. In [13], a dynamic inversion-
based sliding mode control was proposed for attitude tracking
control of an aerial vehicle. Yamasaki et al. [14] used a robust
dynamic inversion controller to maintain high maneuverability and
velocity control of a UAV. In [15], a probabilistic robust non-linear
control approach fused with dynamic inversion technique was
applied to a feedback linearisable aircraft model. In [16], a
dynamic inversion controller was combined with a proportional
integral controller to linearise a non-linear UAV model and to
achieve trajectory tracking. To compensate for uncertainties in the

input matrix and additive unstructured disturbance, in [17],
MacKunis et al. fused the robust controller in [18, 19] with
dynamic inversion technique in the design of a robust controller
with an adaptive extension. Specifically in [19], asymptotic output
tracking was achieved provided a constant estimate of the uncertain
input matrix, used in the control design, satisfied some restrictions.
However, it was unclear how the estimate would be designed to
satisfy the restrictions. Another potential deficit was utilising the
time derivative of the output, which includes acceleration
information. While acceleration measurements are available for
some aircraft systems, utilising them is open to sensor-related
issues such as calibration and/or sensor failures.

In this paper [Preliminary results of this paper have appeared in
[20].], model reference output tracking control of an aircraft model
subject to unstructured uncertainties is discussed. Specifically, the
state and the input matrices are considered to be uncertain, and the
dynamics is subject to an additive state-dependent non-linear
disturbance-like uncertain terms. Furthermore, to remove the need
for acceleration measurements, only the output of the aircraft is
considered to be available for the controller development. In the
design of the controller, a robust integral of the sign of the error
component is utilised. Since the input matrix of the aircraft system
is considered to be uncertain, a matrix decomposition is also
utilised in the development of the error system. The control design
is based on Lyapunov-based arguments and analysis techniques.
After performing a four-step analysis, global asymptotic stability of
the tracking error is ensured. Numerical simulation results which
utilised the model of a Obsrey aircraft [21] are then presented to
demonstrate the validity of the proposed robust (model-free)
controller.

2 Aircraft model
The non-linear aircraft model considered in this work is as follows
[1]: �̇ = �� + �(�, �) + ��,  � = �� (1)

where �(�) ∈ ℝ� denotes the state vector, � ∈ ℝ� × � is the constant
state matrix, �(�, �) ∈ ℝ� is a state-dependent non-linear
disturbance-like term [22] (including gravity, inertial coupling and
non-linear gust modeling effects), � ∈ ℝ� ×� is the constant input
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matrix, �(�) ∈ ℝ� is the control input, � ∈ ℝ� × � is the known
output matrix, and �(�) ∈ ℝ� is the output. The number of states is
greater than the number of outputs (i.e. � > �). The disturbance-
like term �(�, �) is considered to be equal to the sum of state-
dependent uncertainties, denoted by �1(�) ∈ ℝ�, and time-
dependent uncertainties, denoted by �2(�) ∈ ℝ�. The time-
dependent uncertainty vector �2(�) is continuously differentiable
and bounded up to its first-order time derivative, and the state-
dependent uncertainty vector �1(�) depends on the state vector�(�) via trigonometric and/or bounded arguments only and thus it
is assumed that �1(�) and ∂�1(�)/∂� are bounded for all �(�) (see
[21] for the precedence of this type of assumption). When
disturbance term, � satisfies the above boundedness assumption
and provided the pair (�, �) is controllable, the model in (1) is
controllable [23].

3 Control design
In the subsequent development, the system matrices �, �, and the
disturbance-like term �(�, �) are considered to be uncertain, and
thus, will not be used in the control design. The subsequent control
development is derived based on the restriction that only the output�(�) is available.

The main control objective is to ensure that the output of the
aircraft, �(�), tracks the output of the following reference model:�̇� = ����+ ����,  �� = ��� (2)

where ��(�) ∈ ℝ� is the reference state vector, �� ∈ ℝ� × � is the
reference state matrix, �� ∈ ℝ� ×� is the reference input matrix,��(�) ∈ ℝ� is the reference input, � is the same output matrix in
(1), and ��(�) ∈ ℝ� is the reference output. To ensure the stability
of the reference model signals, the reference state matrix �� is
chosen to be Hurwitz, and the reference input ��(�) and its time
derivative are designed as bounded functions of time. Provided
these, linear analysis tools can then be utilised to prove that ��(�),�̇�(�), �̈�(�) and thus, ��(�), �̇�(�), �̈�(�) are bounded functions
of time. Hidden control objective is to ensure that all the signals
remain bounded under the closed-loop operation.

To quantify the tracking control objective, an output tracking
error, denoted by �(�) ∈ ℝ�, is defined as� ≜ � − �� . (3)

To simplify the presentation of the subsequent analysis, an
auxiliary error signal �(�) ∈ ℝ� is introduced as� ≜ �̇ + Λ� (4)

where Λ ∈ ℝ� ×� is a constant, positive definite, diagonal control
gain matrix. It is noted that since only �(�) is measurable then �̇(�)
and thus �(�) are not available, and cannot be utilised in the control
design. After substituting (1)–(3) into (4), following expression can
be obtained:� = ��� + Ω� + �� − �����− �����+ Λ� (5)

where Ω ≜ �� ∈ ℝ� ×� is an auxiliary constant matrix. Since � is
uncertain, then Ω is uncertain as well. Furthermore, neither
symmetry nor positive definiteness of Ω are known. Given these
restrictions, the SDU decomposition in [24, 25] is applied to Ω asΩ = ��� (6)

where � ∈ ℝ� ×� is a symmetric positive definite matrix,� ∈ ℝ� ×� is a diagonal matrix with entries ±1 and � ∈ ℝ� ×� is
a unity upper triangular matrix.

The SDU decomposition of Ω for different aircraft models in
the literature and for the model in the numerical simulations
resulted in the diagonal matrix � being equal to an identity matrix
for all these models. However, for the completeness of the
presentation, the subsequent controller will be designed to be
applicable to any aircraft model without imposing any restrictions
on �.

After utilising the SDU decomposition in (6), the time
derivative of (5) is obtained as�̇ = ���̇ + ����̇ + ��̇ − ����̇�− ����̇�+ Λ�̇ . (7)

Since �, introduced in (6), is symmetric and positive definite, then
so is its inverse, defined as � ≜ �−1 ∈ ℝ� ×�. Premultiplying (7)
with � yields ��̇ = � − � + ���̇ (8)

where �(�, �̇, �) ∈ ℝ� is defined as� ≜ �[���̇ + ��̇ − ����̇�− ����̇�+ Λ�̇] + � . (9)

The auxiliary vector � can be partitioned as� = ��+ �~ (10)

where ��(�) ∈ ℝ� contains functions that can be bounded by
constants in the sense that|��, � | ≤ ���, � ∀� = 1,…,� (11)

where ��, �(�) ∈ ℝ is the �th entry of ��, ���, � ∈ ℝ are positive

bounding constants and �~(�, �̇, �, �̇) ∈ ℝ� contains functions that
can be bounded by error terms as|�~� | ≤ �� � ∀� = 1,…,� (12)

where �~�(�) ∈ ℝ is the �th entry of �~, �� ∈ ℝ are positive bounding
constants and �(�) ∈ ℝ2� is the combined error defined as

� ≜ �� . (13)

In view of (11) and (12), the entries of the auxiliary vector � can
be bounded as|�� | ≤ �� � + ���, � ∀� = 1,…,� . (14)

Based on the subsequent stability analysis, the control input is
designed as

� = − ��[�(�) − �(0) + Λ∫0 ��(�) d�] − �Π (15)

where Π(�) ∈ ℝ� is an auxiliary filter signal updated according to
[Throughout the paper, �� and 0� × � will be used to represent an� × � standard identity matrix and an �× � zero matrix,
respectively.] Π̇(�) = �Sgn(�(�)) with Π(0) = 0� × 1 (16)

where � ∈ ℝ� ×� is a constant, positive definite, diagonal control
gain matrix, Sgn( ⋅ ) denotes the vector sign function, and� ∈ ℝ� ×� is a constant, positive definite, diagonal control gain
matrix chosen of the form� = ��+ �g��+ diag{��, 1, ��, 2, …, ��,�− 1, 0} (17)
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with �g, ��, 1,…, ��,�− 1 ∈ ℝ being positive gains. From the
structures of (15) and (16), it is easy to see that only the tracking
error is required for evaluating the controller. Furthermore, the
modelling terms are not required by the controller so it is model-
free.

After substituting the time derivative of the control input in (15)
into (8), following closed-loop error system is obtained:��̇ = ��+ �~− � − ����Sgn(�) − �(� − ��)��� − ��(18)

where (4), (10) and (16) were utilised.
Since � is unity upper triangular then � − �� is strictly upper

triangular, thus �(� − ��)��� term can be written as

�(� − ��)��� = ΦT, 0 T (19)

where the entries of Φ(�) ∈ ℝ(�− 1) × 1 are defined as

Φ� = �� ∑� = � + 1
� ������, ��� for � = 1,…, (� − 1) . (20)

Since �� = ± 1 ∀� = 1,…,�, following upper bound can be
obtained for the entries of Φ|Φ� | ≤ �Φ� ∥ � ∥ (21)

where ���, � are positive bounding constants satisfying ���, � ≥ ��, �∀�, �. It is important to highlight that �Φ� depends on the control
gains ��+ 1,…, ��.

4 Stability analysis
 
Theorem 1: The robust controller given in (15) and (16) ensures
global asymptotic tracking in the sense that� � → 0 as � → ∞ (22)

from its definition in (13), it is clear that ∥ �(�) ∥, ∥ �(�) ∥ → 0 as� → ∞ provided that the entries of the control gain matrices � and� are selected by using the following procedure:

i. For � = �, �� is selected according to

�� ≥ ���,� 1 + �Λ� (23)

and from � = � − 1 to � = 1, �� are selected according to

�� ≥ ���, �+ ∑� = � + 1
� �Ψ��� 1 + �Λ� (24)

where � ∈ ℝ is some positive bounding constant and the
subscript � = 1,…,� denotes the �th element of the vector or
the diagonal matrix.

ii. Control gain �g is chosen big enough to decrease the constant∑� = 1� ��2/4�g.
iii. Control gains ��, �, � = 1,…, (� − 1) are chosen big enough to

decrease the constant ∑� = 1� − 1�Φ�2/4��, �.
 
Proof: The proof of theorem consists of four sub-proofs. First, in
Appendix 1, boundedness of all the signals under the closed-loop
operation will be presented. Second, in Appendix 2, a supporting
lemma and its proof is presented. The proof of this lemma provides
us to form an upper bound on the terms ∫0� | �̇�(�)| d�, which will

then be utilised in Appendix 3, where the positiveness of an
auxiliary integral term will be demonstrated. Finally, in Appendix
4, the asymptotic convergence of the output tracking error is
proven. □
The stability analysis mandates the control gains to be chosen to
satisfy the procedure detailed in Theorem 1. However, this is a
tedious procedure. To address this issue, the self-tuning algorithm
in [26, 27] which was designed for similar type of robust
controllers are utilised. Specifically, the entries of gain matrices �
and � are updated according to

�� � = �c�+ �� � − �� 0 + Λ�∫0 � �� � d� (25)

�� � = �c�+ 12��2 � − 12��2 0 + Λ�∫0 ���2 � d� (26)

for � = 1,…,� where �c�, �c� ∈ ℝ are positive constant parts of the
time-varying gains that can be chosen freely.

5 Numerical simulation results
The model of Osprey fixed wing aerial vehicle in [17, 21], which is
a commercially available, low-cost experimental flight testbed, was
used in the numerical simulations. Provided the standard
assumption that the longitudinal and lateral subsystems of the
aircraft are decoupled, the state-space model for the Osprey aircraft
testbed can be represented as in (1). The system matrices � ∈ ℝ8 × 8,� ∈ ℝ8 × 4 and � ∈ ℝ4 × 8 are given as

� = �lon 04 × 404 × 4 �lat , � = �lon 04 × 204 × 2 �lat , � = �lon 02 × 402 × 4 �lat (27)

where �lon, �lat ∈ ℝ4 × 4, �lon, �lat ∈ ℝ4 × 2, and �lon, �lat ∈ ℝ2 × 4 are
system matrices for the longitudinal and lateral subsystems. The
state vector �(�) = [�lonT , �latT ]T ∈ ℝ8 where �lon(�), �lat(�) ∈ ℝ4
denote the longitudinal and lateral state vectors and are defined as

�lon = ���� , �lat = ���� (28)

where the state variables �(�), �(�), �(�), �(�), �(�), �(�), �(�),
and �(�) are velocity, angle of attack, pitch rate, pitch angle, side
slip angle, roll rate, yaw rate, and bank angle, respectively.

In the numerical simulations, tracking control of velocity, pitch
rate, roll rate, and yaw rate are considered. These four states are
controlled by four control inputs. Control inputs are thrust for the
forward velocity, aileron for the roll movement, elevator for the
pitch movement, and rudder for the yaw movement. The control
input �(�) ≜ [�lonT , �latT ]T ∈ ℝ4 where �lon(�), �lat(�) ∈ ℝ2 denote
longitudinal and lateral control inputs and are given as

�lon = �e�� , �lat = �a�r (29)

where the control inputs �e(�), �t(�), �a(�), and �r(�) are elevator
deflection angle, control thrust, aileron deflection angle, and rudder
deflection angle, respectively.

Following system matrices of the Osprey aircraft, are based on
experimentally determined data at a cruising velocity of 25 m/s and
at an altitude of 60 m (see (30)) The state-dependent non-linear
disturbance-like term �(�, �) ≜ [�lon(�, �)T, �lat(�, �)T]T with�lon(�, �), �lat(�, �) ∈ ℝ4 being defined as
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�lon ≜ −9.81sin �000 + �(�), �lat ≜ 0.39sin�000 (31)

where �(�) ∈ ℝ4 is defined as

� ≜ 1�0
�ds2 1 − cos ��g� −11.17.237.40 (32)

where � denotes the distance along the airplane's flight path for the
gust to reach its peak velocity, �0 is the forward velocity of the
aircraft when it enters the gust, �g = ∫�1�2�(�) d� represents the
distance penetrated into the gust and �ds is the design gust velocity
as specified in [22]. Parameter values were chosen as�ds = 10.12�/�, � = 15.24 m and �0 = 25 m/s [21].

Following system matrices were utilised for the reference
model: (see (33)) Entries of the reference input ��(�) ∈ ℝ4 are
elevator deflection angle, control thrust, aileron deflection angle,
and rudder deflection angle, respectively, and was designed as

�� = 0.2sin(�)0.20.2sin(�)0.2sin(�) . (34)

The self-tuning algorithm in [26, 27] was used as an add-on and
after the algorithm converged, numerical simulations were re-run
for the final values of the control gains. Specifically, control gains� and � were obtained from the self-tuning algorithm as

� = 72.4 0 0 00 81 0 00 0 79.6 00 0 0 80.8 , �
= 300 0 0 00 300.03 0 00 0 300 00 0 0 300.1

(35)

and Λ was chosen as follows:

Λ = 2 0 0 00 2 0 00 0 2 00 0 0 2 . (36)

In the simulations, the output vector consisted of pitch rate and
forward velocity for the longitudinal subsystem, and roll rate and
yaw rate for the lateral subsystem. To demonstrate robustness to
noise, additive white Gaussian noise with signal-to-noise ratio of20dB was added to the velocity measurements. Sampling time was
chosen as 0.001 s.

The tracking performance, tracking error and the control inputs
are presented in Figs. 1–6, respectively. From Figs. 1–5, it is clear
that the tracking objective was satisfied. Control surface limits are
given in Table 1 [21]. These limits were determined via the
detailed specifications sheet given with the Futaba S3010 standard

�lon = −0.15 11.08 0.08 0−0.03 −7.17 0.83 00 −37.35 −9.96 00 0 1 0 , �lat = −0.69 −0.03 −0.99 0−3.13 −12.92 1.1 017.03 −0.10 −0.97 00 1 −0.03 0
�lon = 3 × 10−3 0.0610−5 10−40.98 00 0 , �lat = 0 01.5 −0.02−0.09 0.170 0�lon = 0 0 1 01 0 0 0 , �lat = 0 1 0 00 0 1 0 .

(30)

�lonm = 0.6 −1.1 0 02 −2.2 0 00 0 −4 −6000 0 0.1 −10 , �latm = −4 −600 0 00.1 −10 0 00 0 0.6 −1.10 0 2 −2.2
�lonm = 0 0.50 010 00 0 , �latm = 0 010 00 0.50 0 .

(33)

Fig. 1  Reference forward velocity (dashed line) and the actual forward
velocity (solid line)
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ball bearing servo. From Fig. 6 and Table 1, it is clear that the
control inputs are in acceptable limits. 

In Tables 2 and 3, average maximum steady-state error and
average root mean-square error are presented. Five Monte Carlo

simulations are performed for different initial state values.
Maximum steady-state error is defined as the mean of the last 5 s of
the error values. The error values in Tables 2 and 3 show that the
proposed controller ensured asymptotic tracking for different initial
values of the states. 

6 Conclusions
A robust (model-free) controller was designed for an aircraft model
subject to unstructured uncertainties in the dynamics and additive
state-dependent non-linear disturbance-like terms. In the design of
the controller, dynamic inversion technique was used in
conjunction with robust integral of the sign of the error terms to
compensate for the uncertainties in the dynamic model. Lyapunov
type stability analysis techniques were utilised to ensure global
asymptotic tracking of the output of a reference model. Numerical
simulation results were presented that demonstrate the viability of
the proposed methodology.

Fig. 2  Reference pitch rate (dashed line) and the actual pitch rate (solid
line)

 

Fig. 3  Reference roll rate (dashed line) and the actual roll rate (solid line)
 

Fig. 4  Reference yaw rate (dashed line) and the actual yaw rate (solid
line)
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Fig. 5  Output tracking error �(�)
 

Fig. 6  Control input �(�)
 

Table 1 Control input limits used in the simulations
Control thrust saturation limit ±200 N

Elevator saturation limit ±30∘
Aileron saturation limit ±30∘
Rudder saturation limit ±30∘
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8 Appendix
 
8.1 Appendix 1: Boundedness proof

In this appendix, boundedness of all the signals under the closed-
loop operation will be demonstrated. Let �1(�) ∈ ℝ be a Lyapunov
function defined as

�1 ≜ 12�T� + 12�T�� (37)

which can be upper and lower bounded as12 min {1,�min} ∥ � ∥2 ≤ �1 ≤ 12 max {1,�max} ∥ � ∥2 (38)

where �min and �max denote minimum and maximum eigenvalues
of �, respectively. After utilising the symmetry of �, time
derivative of the Lyapunov function can be written as�̇1 = �T�̇ + �T��̇ (39)

to which substituting (4), (17)–(19) results in�̇1 = − �TΛ� + �T��+ �T�~−�T����Sgn(�) − �T Φ0 − �T� − �g�T� − ∑� = 1
� − 1��, ���2 . (40)

Substituting (11), (12), (20) into (40) yields in

�̇1 ≤ − �TΛ� + ∑� = 1
� ���, � |�� | + ∑� = 1

� �� |�� | ∥ � ∥ + �1 ∥ � ∥
+ ∑� = 1
� − 1�Φ� |�� | ∥ � ∥ − ∥ � ∥2 − �g ∥ � ∥2 − ∑� = 1

� − 1��, ���2(41)

where the upper bound |�T����Sgn(�)| ≤ �1 ∥ � ∥ with �1 ∈ ℝ
being a positive bounding constant was also utilised. After utilising
following manipulations:

�1 ∥ � ∥ + ∑� = 1
� ���, � |��| ≤ 12� ∥ � ∥2 + � �12+ ∑� = 1

� ���, �2 (42)

�� |�� | ∥ � ∥ − �g��2 ≤ ��24�g ∥ � ∥2 (43)

�Φ� |�� | ∥ � ∥ − ��, ���2 ≤ �Φ�24��, � ∥ � ∥2 (44)

Table 2 Tabulated steady-state error values for five
simulation runs

State Average maximum steady-state error
forward velocity 0.2751

pitch rate 0.0320
roll rate 0.0132
yaw rate 0.0295

 

Table 3 Tabulated root mean-square error values for five
simulation runs

State Average root mean-square error
forward velocity 0.0652

pitch rate 0.0078
roll rate 0.0032
yaw rate 0.0072
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∀� = 1,…, (� − 1), where � ∈ ℝ is a positive damping constant,
the right-hand side of (41) can be upper bounded as

�̇1 ≤ − min Λmin, 1 − 12� − ∑� = 1
� ��24�g − ∑� = 1

� − 1 �Φ�24��, � ∥ � ∥2
+� �12+ ∑� = 1

� ���, �2 (45)

where Λmin denotes the minimum eigenvalue of Λ. Provided that the
control gains Λ, �g, ��, 1,…, ��,�− 1 are selected sufficiently high,
following expression can be obtained for the time derivative of the
Lyapunov function: �̇1 ≤ − �1�1+ �2 (46)

where (38) was utilised and �1 and �2 are some positive bounding
constants defined as

�1 ≜ 2max {1,�max} min Λmin, 1 − 12� − ∑� = 1
� ��24�g − ∑� = 1

� − 1 �Φ�24��, �(47)

�2 ≜ � �12+ ∑� = 1
� ���, �2 . (48)

From (46), it can be concluded that �1(�) ∈ �∞, and thus, �(�),�(�) ∈ �∞. The definition of �(�) in (4) can be utilised to prove that�̇(�) ∈ �∞. By using (3) and its time derivative, along with the
assumption that the reference model signals being bounded, it can
be proven that �(�), �̇(�), �(�), �̇(�) ∈ ℒ∞. The above boundedness
statements can be utilised along with (1) to prove that �(�) ∈ ℒ∞.
From (15), it is easy to see that �̇(�) ∈ ℒ∞. After utilising the above
boundedness statements and the assumption that the reference
model signals being bounded along with (7), it is clear that�̇(�) ∈ ℒ∞. Standard signal chasing algorithms can be used to prove
that all remaining signals are bounded.

8.2 Appendix 2: Lemma 1 and its proof

 
Lemma 1: Provided that �(�) and �̇(�) are bounded, the following
expression for the upper bound of the integral of the absolute value
of the �th entry of �̇(�) can be obtained∫�0 � | �̇�(�)| d� ≤ � + �∫�0 � |��(�)| d� + |��| (49)

where �, � ∈ ℝ are some positive bounding constants.
 
Proof: Since �(�) and �̇(�) are bounded from the above
boundedness proof, this lemma can be proven similar to [28]. □

8.3 Appendix 3: Lemma 2 and its proof

 
Lemma 2: Let the auxiliary function �(�) ∈ ℝ be defined as

� ≜ �T(��− ����Sgn(�)) . (50)

If the entries of � are selected to satisfy the conditions in (23) and
(24), then it can be concluded that the auxiliary function �(�) ∈ ℝ
defined as

� ≜ ��−∫0 ��(�) d� (51)

is non-negative where �� ∈ ℝ is a positive bounding constant.
 
Proof: The proof of this lemma is a special case of the proof in
[29]. □

8.4 Appendix 4: Asymptotic stability proof

In this appendix, the asymptotic stability of the output tracking
error is presented. Let �2(�) ∈ ℝ be a Lyapunov function defined
as �2 ≜ �1+ � (52)

where �(�) ≜ [�T �T �]T ∈ ℝ(2�+ 1) × 1. It should be noted that,
the non-negativeness of �(�), which is essential to prove that�2(�) is a valid Lyapunov function, was proven in Appendix 7.3
[29]. The Lyapunov function in (52) can be upper and lower
bounded as follows:12 min {1,�min} ∥ � ∥2 ≤ �2 � ≤ max 12�max, 1 ∥ � ∥2 .
Taking the time derivative of the Lyapunov function in (52),
substituting (40) and the time derivative of (51) and then
simplifying results in

�̇2 = − �TΛ� + �T�~− �T Φ0 − �T� − �g�T� − ∑� = 1
� − 1��, ���2 . (53)

After utilising (12) and (21) along with (43) and (44), the right-
hand side of (53) can be upper bounded as

�̇2 ≤ − min {�min(Λ), 1} − ∑� = 1
� ��24�g − ∑� = 1

� − 1 �Φ�24��, � ∥ � ∥2 . (54)

Provided that the control gains Λ, �g, ��, 1,…, ��,�− 1 are selected
sufficiently high, the below expression can be obtained for the
derivative of the Lyapunov function�̇2 ≤ − �3 ∥ � ∥2 (55)

where �3 is some positive bounding constant. From (52) and (55), it
is clear that �2(�) is non-increasing and bounded. After integrating
(55), it can be concluded that �(�) ∈ ℒ2. Since �(�) ∈ ℒ∞ ∩ ℒ2 and�̇(�) ∈ ℒ∞, from Barbalat's lemma [30], ∥ �(�) ∥ → 0 as � → ∞,
thus meeting the control objective. Since no restrictions with
respect to the initial conditions of the error signals were imposed
on the control gains, the result is global.
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