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We present a microscopic theory of electronic and optical properties of colloidal graphene quantum dots
(CGQDs). The single-particle properties are described in the tight-binding model based on the p, carbon orbitals.
Electron-electron screened Coulomb direct, exchange, and scattering matrix elements are calculated using Slater
p. orbitals. The many-body ground state and excited states are constructed as a linear combination of a finite
number of excitations from the Hartree-Fock (HF) ground state (GS) by exact diagonalization techniques.
HF ground states corresponding to semiconductor, Mott-insulator, and spin-polarized phases are obtained as a
function of the strength of the screened interaction versus the tunneling matrix element. In the semiconducting
phase of a triangular CGQD, the top of the valence band and the bottom of the conduction band are found to be
degenerate due to rotational symmetry. The singlet and triplet exciton spectra from the HF GS are obtained by
solving the Bethe-Salpeter equation. The low-energy exciton spectrum is predicted to consist of two bright-singlet
exciton states corresponding to two circular polarizations of light and a lower-energy band of two dark singlets
and 12 dark triplets. The robustness of the bright degenerate singlet pair against correlations in the many-body
state is demonstrated as well as the breaking of the degeneracy by the lowering of symmetry of the CGQD.
The band-gap renormalization, electron-hole attraction, fine structure, oscillator strength, and polarization of the
exciton are analyzed as a function of the size, shape, screening, and symmetry of the CGQD. The theoretical

results are compared with experimental absorption spectra.
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I. INTRODUCTION

There is currently interest in the optical properties of
graphene [1-20] and graphene-based nanostructures, carbon
nanotubes [21-31], nanoribbons [32-35], and graphene quan-
tum dots [36-58]. Graphene quantum dots are interesting
because their electronic [36—45], magnetic [42,43,46-55], and
optical properties [51,55,57,58] can be potentially engineered
by controlling their size, shape, edge character, number of
layers, and carrier density.

In particular, Li and co-workers described recently a class
of colloidal, solution processable graphene quantum dots
(CGQDs) with a well defined structure [59-63]. Two classes
of dots, with N = 168 and 132 atoms, were obtained and
the absorption and emission of solutions containing CGQDs
were measured [61]. The number of atoms in each dot was
determined from mass spectrometry, while the symmetry was
inferred through the solution chemistry and infrared vibra-
tional spectra. Since the CGQDs are suspended in solution,
whose dielectric constant can be tuned, their optical response
can be studied as a function of their size and shape, as well
as the strength of the Coulomb interactions. Indeed, optical
absorption spectra reveal a clear dependence of the position
of the absorption edge on the number of atoms [59-62]. The
fluorescence and phosphorescence spectroscopy [61] shows
the existence of a gap between emission and absorption spectra
interpreted in terms of the energy difference between the
singlet and triplet exciton states.

The GCQD with N = 168 atoms in vacuum was recently
analyzed theoretically by Schumacher [64] using the time-
dependent density functional theory (DFT) approach. The
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numerical simulation revealed the existence of a bright-
singlet exciton doublet in a band of dark-triplet and singlet
states.

Here we present a microscopic theory of the optical
properties of colloidal graphene quantum dots based on a
combination of the tight-binding (TB) description of the
p. single-electron states and screened electron-electron in-
teractions treated by exact diagonalization methods in the
space of multipair excitations out of the Hartree-Fock (HF)
ground state. We find the semiconducting, Mott-insulator, and
spin-polarized HF ground states as a function of the strength
of the Coulomb interaction. In the semiconductor phase we
describe a universal form of the exciton spectrum, with the
two bright-singlet exciton states and a band of two dark-singlet
and 12 triplet exciton states at low energy, in agreement with
the results of Schumacher. We determine the bright-singlet
dark-triplet exciton splitting and relate the degeneracy of the
bright exciton states to the symmetry of the quantum dot. The
effect of the reduction of size and the removal of symmetry
on the exciton spectrum is investigated by comparing the
N = 168 and 132 CGQDs. The theoretical absorption spectra
are compared with experiment.

The paper is organized as follows. In Sec. II we describe the
structure, model Hamiltonian, and the TB-HF-configuration
interaction (CI) method. In Sec. III we present a symmetry
analysis of the band-edge exciton spectra of the triangular
N =168 CGQD and numerical results for N = 168 and
132 CGQDs. In Sec. IV we discuss the effect of screening
on optical properties and compare theoretical absorption
spectra with the experimental data. Section V contains
conclusions.
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FIG. 1. (Color online) Graphene quantum dots with 132 and
168 atoms. C168 exhibits all point symmetries of the graphene
sheet.

II. THE MODEL

The CGQDs C132 and C168 [59-63] are modeled as two-
dimensional clusters of carbon atoms, depicted as blue circles,
forming the perfect honeycomb lattice with the bond length
ap = 0.142 nm, as shown in Fig. 1. As seen in the figure, the
N = 132 atom graphene quantum dot is obtained by cutting
out the upper corner consisting of 36 carbon atoms from the
dot with N = 168 atoms. The N = 132 CGQD is smaller and
does not have the rotational symmetry of the C168 molecule.
For both structures, we assume hydrogen passivation and no
edge reconstruction [53].

Building on our earlier work [44,52,53,58], we assume that
the mobile electrons occupy the states of the 7 band composed
of the spin-degenerate p, orbitals, one per atom. As a result,
the charge-neutral CGQD with N atoms carries N electrons.

We start by describing the motion of a single electron
in a lattice of positively charged ions. Out of six electrons
belonging to each carbon atom, five are strongly bound,
forming the bonds in the plane of the CGQD and partially
shielding the Coulomb potential of the carbon nucleus. We
expand the wave function in the basis of orthogonalized atomic
p; orbitals |i) localized on atom i. The screened electron-ion
interaction ), Vi due to positive ions centered at the kth
atom leads to the scattering matrix element (i| >, V|j) from
orbital |i) to |j). Defining the tunneling matrix element as
a two-body contribution #;; = (i|(V; + V;)|j), we are left
with three-body contributions (i| ", 27 Velj). In order to
compute the three-body terms, we approximate the screened
electron-ion interactions Vj by the electron-electron Coulomb
elements (i|Vi|j) = —(ik|V|kj).

Finally, denoting the electron creation operators for state i
by ciJ; allows us to write the Hamiltonian for N carbon atoms
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and N electrons as

N
=3 % - S nvin e,

il=1 o k+#i,l

1 .
+5 DS GIVIK ¢l 1

i,j,k,l 0,0’

In the expression above, the first term is the one-electron
Hamiltonian, which describes the interaction between an
electron and the shielded ions. It is important to note that the
positive charge scattering term depends on the atomic index
and is different for the edge and interior atoms of the CGQD.
In the following calculations we restrict the tunneling matrix
t;; to nearest-neighbor (NN), ¢, and next-nearest-neighbor
(NNN), t,, tunneling. The last term in Eq. (1) describes
the screened electron-electron interactions, with the Coulomb
matrix element (i j|V |kl) defined in the atomic p, basis v;(r)as

G1vik) = [ [ andrsv ;e

2
X —— Y (e Y (). (2)
Kklrz —rq
For the full HF treatment, all direct, exchange, and scatter-
ing Coulomb matrix elements are computed numerically by
approximating the p, orbitals with Slater functions for up to
second-nearest-neighbor atoms [44,52,53,58] while for atoms
at greater distances, the matrix elements are approximated
by matrix elements corresponding to classical point-charge
interactions. Coulomb interactions are assumed to be screened
by the effective dielectric constant « with contributions
from both the o electrons of graphene and the solvent in
which the dots are suspended. The Hamiltonian contains two
energy scales, the hopping matrix element ¢ and the Coulomb
interactions screened by the effective dielectric constant «.
The two energy scales determine the electronic properties of
CGQDs.

A. Hartree-Fock approximation

The full interacting Hamiltonian for the N-atom CGQD
with N ~ 10 cannot be diagonalized exactly. Thus we start
by solving the Hartree-Fock problem first and treating the
interactions among HF quasiparticles second. The HF Hamil-
tonian is obtained from the full Hamiltonian by replacing the
two-body scattering terms with the single-particle scattering
from the potential of the mean-field density matrix, which
becomes

N N
Hae =Y tuche, +3 [ S IV Ik

il,o il,o = jko’
- <ij|V|lk>awf)<c;/ck,,,>}c,-*;,c,(,, 3)

where we introduced the effective hopping element t; =
tip — Zk#l(iklwkl) and (cfg,cka,) = pjko are the elements
of the density matrix. The HF operators are defined as
linear combinations of atomic operators b = Z,]v: L Bpoici
that diagonalize the converged HF Hamiltonian as Hyr =
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>N p=1 2o €pob},b,,. The HF energies are composed of
two parts: €,, = E,, + X(po). The single-particle part,
E,, originates from the single-particle tight-binding part
of the Hamiltonian Hyp, and the self-energy, X(po) =
S0 (2(pg| Vielap) — (pg|Viae| pg)), accounts for all di-
rect and exchange interactions of the electron in the HF orbital
p with all other electrons filling the valence band. Note that
in the above equation the Coulomb elements in the basis of
HF orbitals are obtained by rotating the elements (ij|V|kl)
defined in the basis of localized orbitals [Eq. (2)]:

= Y BpiB, B} B (ijIVIK).  (4)
i,j.k,l

(pq|Vurlrs)

One can further simplify the problem from the full
HF approximation and treat the system in the Hubbard U
approximation. Then, instead of using the full Hamiltonian,
one would eliminate all Coulomb interactions except for
the on-site U; = (ii|V|]ii) terms and create Hubbard U
quasiparticles.

B. Interaction of HF quasiparticles

The rotation of the single-particle basis, defined by the
HF procedure, diagonalizes the mean-field Hamiltonian Hy
[Eq. (3)], but not the full Hamiltonian given in Eq. (1). To
proceed further, we now rotate the full Hamiltonian into the
HF basis. Expressing the operators c - (¢;,)in Eq. (1) in terms
of the HF creation (annihilation) operators b+ (b ,) as

ZBW, 5)

and rewriting the hopping elements t;; in terms of the HF
energy levels using Eq. (3), we obtain the full Hamiltonian in
the basis of the HF quasiparticles in the form

N
HQD = Z Z (61705[”] V[Iz\glcj)b;rabqa

N
1
+§ Z (pCI|VHF|rS>b;ab¢JIF(r bra’bsa’ (6)
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where

Vore =Y o ((pr|Vaelrq) — 850/ (pr| Vielgr)).  (7)

Here n, , is the number operator determining the occupation
of the HF level r by a spin-o’ electron.

C. Correlations via multipair excitations from the HF state

We now proceed to include electronic correlations as
interactions of HF quasiparticles using the CI method. The
configuration-interaction step involves creating a basis set,
including the HF state |HF) and all the excitations up to the
selected number of quasiparticles, constructing the matrix of
the Hamiltonian Hqp [Eq. (6)] in this basis, and diagonalizing
this matrix numerically. As a result, one obtains correlated
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eigenstates @, of the form
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Here |po;qo) =b},b,,|HFy) are the single-pair ex-

citations that create an electron-hole pair at states p-
q, conserving the total projection of the spin. Similarly,
|po1,qoa;ro1,so0) = b, bl b, b, |HFy) are the two-pair
excitations and so on.

In particular, the HF ground state itself is corrected by
contributions from multipair excitations. The corrected ground

state will then be expressed as ®.

D. Absorption spectra

The absorption spectrum of a photon with energy w is
obtained from Fermi’s golden rule:

Aw) =Y W, [(@y|PH®,)S(Ey — Ey — ), (9)

v,V

where E,,E, are the energies of the initial and the final state
participating in the absorption, P+ =" pa.o d(p,q)b},b,,
is the polarization operator adding a pair excitation while
annihilating a photon, and W, is the probability that the initial
many-body state v is occupied.

We will now elaborate on the dipole element d(p,q)
appearing in the polarization operator, which is described in
terms of atomic orbitals as

N N
d(p,q>=ZZ By j(i1E - F1j), (10)

where £ is the polarization of light. We first need to evaluate
the dipole element in the basis of atomic p, orbitals. Using
the orthogonality of the orbitals, and setting all terms to zero
except for the on-site and the NN terms, we get the dipole
element between p, orbitals as [58,65]

(i[¢-71j) = Dije - (R; — R)(1 = &) + & - Risyy. (1)
where the coefficient D;; = | [ dr¢*(F)re,(F — ﬁ<;j))| is com-
puted using the Slater p, orbitals. In our calculations, we
include NN and NNN elements which are calculated as DNN =
0.3433 and DN =0.0873 in units of nearest neighbor
distance, respectively.

III. ELECTRONIC AND OPTICAL PROPERTIES OF
N =168 COLLOIDAL GRAPHENE QUANTUM DOT

In this section, we apply the TB-HF-CI methodology to the
electronic states and absorption spectrum of N = 168 CGQD.

A. Rotational symmetry

The triangular N = 168 CGQD is rotationally symmetric
and exhibits all point symmetries of the graphene sheet. The
three symmetry axes, shown in red, divide the CGQD into three
segments, A, B, and C, with 56 atoms each. We assign atomic
index jg (B = A) to atoms in segment A. Equivalent atoms in
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FIG. 2. (Color online) Graphene quantum dot with 168 atoms
exhibiting all point symmetries of the graphene sheet. The three
symmetry axes are shown in red.

segments B and C, related by a rotation of o = 27/3, are
shown in Fig. 2.

To proceed further we assign values to atomic segments
(A,B,C) as {0,1,2}. Next, by rotating each atomic orbital
group (ja,jB,jc), we construct new basis vectors

m 1
v 7
with m = {0,1,2}.

After rotating to the new basis, we find the TB Hamiltonian
block diagonal for each m = {0,1,2} subspace and, upon
diagonalization of the TB Hamiltonian, obtain the single-
particle energy levels with eigenvalue index v and quantum
number m, shown in Fig. 3(a). We find the conduction band
minimum (CM) and valence band maximum (VM) of the
C168 molecule to be degenerate due to the degeneracy of
the m = 1 and m = 2 subspaces, which is a result of the fact
that ¢/2"/3 = (¢!*/3)* = (¢71?"/3)*. The degeneracy of these
levels can be linked to the valley degeneracy of graphene.

We now relate the triangular symmetry to the dipole ele-
ments and optical selection rules. Expanding the rotationally
invariant eigenvectors |v,m) in terms of localized orbitals,
Eq. (12), and assuming circular polarization of light €., after
lengthy algebra, we find that the dipole elements between the
CM/VM levels satisfy the selection rule

(Ljo) + " Z DN jyy 4 &2 2 o)y, (12)

(v’,m/|§ . ?Iv,m) = 8m’,milcm,m’,v,v’v (13)

where C is a constant determined numerically.

Arrows in Fig. 3(a) show the optical transitions with
a finite matrix element while Fig. 3(b) shows all possible
transition energies along with their dipole strength between
the highest (lowest) three VB (CB) states. We see indeed that
the selection rule §,, ,,,+ is satisfied and all vertical transitions
Am = 0 are dark. The transitions with Am = %1 correspond
to circularly polarized light with o = %1 polarizations, in
analogy to semiconductor quantum dots. Figure 3(b) shows
the dipole matrix elements as a function of transition energy.
The lowest-energy transitions between the two top valence and
bottom conduction band states correspond to two dipole-active
and two dark transitions. The lowest-energy shell is separated
by a gap from the next shell. However, the lack of dipole
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FIG. 3. (Color online) (a) The tight-binding energy levels for
C168 for t = —-3.0 eV, 1, =—0.1 eV, and ¥ =5. Only a few
levels around the Fermi level are shown. Dashed lines between CB
and VB levels indicate a weak oscillator strength while the solid
line corresponds to strong transitions. (b) Oscillator strengths of
transitions within the window of 6CB and 6VB levels. The strongest
line around 1.5 eV corresponds to a transition between the degenerate
CBM and VBM levels, while the second set of transitions at around
2.75 and 2.9 eV is due to transitions between the higher lyingm = 0
and m = 1,2 levels.

moments for some of the transitions between the higher lying
m = {1,2} states with the m = 0 levels visible in Fig. 3(b) is
due to the weak overlap of the wave functions and is unrelated
to the symmetry.

Below we will analyze the structure of the lowest-energy
shell in absorption in the interacting CGQD.

B. Band-edge exciton

Let us now describe the characteristic spectrum of band-
edge excitons on the lowest-energy shell. We relabel the two
topmost valence band states as {v1,v2} and two lowest-energy
conduction band states as {c1,c2}.

We start by filling up all the VB TB orbitals with spin-up and
spin-down electrons and forming the HF ground state |HF;) as
shown in Fig. 4(a). Next, the excitations | p,q) = b;Tb 41 'HFgs)
are created. The Am = %1 optically active excitations are
shown in Fig. 4(b). There is only one electron-hole pair
with Am = +1 and one with Am = —1 for a given spin of
an excited electron. The energy of each pair, E, , =€, —
€, + X(p) — Z(q) — {(pq|Vurlgp), is given by a difference
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FIG. 4. (Color online) (a) The HF ground state |HF). (b) Single-
pair excitation with total angular momentum Am = +1 and Am =

—1. (c) Single-pair excitations from |HFy) with total angular
momentum Am = 0.

s

—Am=0——

in single-particle energies and self-energies ¥ between the
electron and hole and by the electron-hole attraction.

With two possible Am = +£1 states and two possible
spin directions, there are four exciton states, as shown
on the right-hand side of Fig. 5(a). There is one sin-

glet and one triplet state with S, =0 for each Am = +£1
i (byybyy &by, by
state given as |p,q,S/T) = T'HFgS>' The en-

ergy of the singlet and triplet, E, , s/7 = €, — €, + 2(p) —
2(q) — (pq|Vurlgp) + (pq|Vurlpq) £ (pq|Vur|pq), differs
by twice the exchange, which pushes the singlets up in energy.
A similar analysis is carried out for the two Am = 0 [Fig. 4(c)]
dark configurations, as shown on the left-hand side of Fig. 5(a).
Two Am = 0 configurations of each total spin component

1.454 1 —
14534 m=0 singlet == (@) [130 i— |
1310 —mio triplet 1 ) T ) il
o— =] smglet — 1.204
1.3051 o— =] triplet / —
(V) 7 117 | =
1300 / ) = —
1.14 1
1.2954
Am =0 Y Am = +1
1 1 3 1 1 111 71
+direct  +exchange  Full CI  +exchange  +direct HubbardU

FIG. 5. (Color online) (a) Evolution of singlet-triplet splitting
with the inclusion of different interactions in C168 for t = —3.0 eV,
t, = —0.1 eV, and k = 5 starting with the full HF ground state. The
black lines are Am = %1 triplets, red are Am = +1 singlets, while
Am = 0 triplet and singlet levels are shown in gray and orange.
The left section shows the evolution of Am = 0 excitons while the
right section shows the evolution of Am = %1 excitons. The middle
section depicts all Am levels after full CI calculations. (b) Starting
with the Hubbard U ground state, the singlet-triplet splitting after
full CI.

PHYSICAL REVIEW B 89, 085310 (2014)

interact, and thus their energy is renormalized. The final
spectrum of the band-edge excitons is shown in the middle
column (Full CI) of Fig. 5(a). We find two bright degenerate
singlet exciton states and a band of two dark-singlet and four
dark-triplet exciton states at lower energies. If we count all
possible S, configurations, the low-energy band consists of two
dark-singlet and 12 dark-triplet states. By comparing Fig. 5(a)
obtained from full HF quasiparticles and Fig. 5(b) obtained
from Hubbard U quasiparticles in the semiconductor regime,
we see that the separation of the degenerate bright singlets from
the forest of dark singlets and triplets is robust. However, the
ordering of the levels in the dark region changes from Hubbard
U to full HF due to the inclusion of exchange interactions
which drive the lowest excited state from a singlet to a
triplet.

C. Numerical results

We now turn to the numerical analysis of the absorption
spectrum. We start with a comparison of the TB and fully
self-consistent Hartree-Fock energy spectra. Figure 6 shows
the tight-binding and fully self-consistent Hartree-Fock energy
levels for « =5, t =—3.0 eV, and r, = —0.1 eV, both
normalized to the middle of the energy gap. We see that
the HF energy spectrum, renormalized by the self-energy,
resembles closely the tight-binding spectrum. In particular,
the degeneracy of VB maximum (VBM) and CB minimum
(CBM) is preserved. The main differences between spectra
are the breaking of electron-hole symmetry and changes in the
electron bandwidth, which are expected in HF.

By minimizing the energy of the ground state through
the self-consistent HF procedure, we obtain the quasiparticle
states and energy levels as well as the interactions between HF
quasiparticles. Next, we compute the ground and excited states
and the absorption spectrum using the TB-HF-CI approach.

18
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FIG. 6. (Color online) The self-consistent Hartree-Fock and
tight-binding energy levels for C168 for k =5, ¢t = —-3.0eV, 1, =
—0.1 eV. Only a fraction of the levels around the Fermi level are
shown.
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FIG. 7. (Color online) Evolution of absorption spectrum of C168
fort = —3.0eV,, = —0.1eV,andk = 5.0, with increasing accuracy
of approximations: (a) TB absorption spectrum, (b) blueshift due to
self-energy correction, (c) inclusion of electron-hole attraction and
correlations, and (d) renormalization of the ground state and exciton
spectrum due to interaction with up to four-pair excitations.

This allows us to discuss the robustness of the band-edge
excitons and absorption spectrum discussed above.

Figure 7 shows the evolution of the low-energy excitonic
spectrum associated with the degenerate VBM/CBM states.
The topmost panel shows the absorption spectrum of the
noninteracting CGQD. The second panel shows the absorption
in the TB-HF approximation. The self-consistent HF approach
protects the rotational invariance of the m = {0, 1,2} subspaces
but blueshifts the energy gap due to differences in self-energy
of the electron and the hole, as expected.

The third panel of Fig. 7 shows the band-edge exciton
spectrum calculated from the HF ground state. We see
that the inclusion of electron-hole attraction, exchange, and
electron-hole correlations redshifts the absorption spectrum
and separates in energy the singlet and triplet excitons. The
two bright excitons remain degenerate, and a band of dark
singlets and triplet exciton states appears at lower energy. The
last row in Fig. 7 shows the absorption spectrum calculated
using renormalized ground and excited states obtained after
the inclusion of all possible configurations with up to four
pairs within the limited Hilbert space of four VB and four CB
HF states. The renormalization of the energy of the ground
and excited triplet states with the number of excited pairs is
shown in the inset. We see that the inclusion of multipair
excitations renormalizes both the ground state and the excited
states, but does not significantly shift the transition energies
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nor does it remove degeneracies or change the structure
of the absorption spectra. We conclude that the absorption
spectrum obtained from an exciton excited out of a HF ground
state is a good approximation for a semiconductor CGQD.
Below we will discuss how the absorption depends on the
tunneling matrix element and on screening of electron-electron
interactions.

IV. EFFECTS OF SCREENING « AND TUNNELING ¢

The ground state properties depend strongly on the values
of the strength of screening and the amplitude of the hopping
term. Previous work on the ground state properties of graphene
[66—-69] suggest that for strong Coulomb interactions, or small
values of «, there exists a transition from a semimetallic,
weakly interacting phase to a Mott-insulating, strongly corre-
lated phase. Below we discuss the phase diagram of C168 as a
function of « and ¢. Figure 8(a) shows the energy of the full HF
and Hubbard U ground states for the spin-polarized, S, = N /2,
and spin-unpolarized, S, =0, C168 as a function of k for
t = —4.2eV. We see that, compared to the spin-polarized case,
the spin-unpolarized phase is the ground state for all k down to
k = 1.4 in full HF while the spin-polarized state is predicted
as the ground state at « < 1.4 using the full HF approximation.
Figure 8(b) shows the calculated average density matrix
element p, = (cif7 Cio) fori, j nearest neighbors, averaged over
all pairs for a spin-unpolarized ground state as a function of
k. The density matrix element shows the probability of having
two electrons with the same spin on nearest-neighbor orbitals.
For large « we find p, = 0.26, i.e., the value for the HF state
of bulk graphene [56]. The local values of p, of course differ
from the bulk value at the edges even at the high-« range. Using
full HF, as « decreases, we see the onset of the phase transition
at around ¥ < 1.8. For ¥ < 1.8 the ground state departs from
the semiconducting state of graphene and becomes a Mott
insulator, with spin-up electrons on lattice A and spin-down
electrons on lattice B. Increasing the magnitude of the hopping
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FIG. 8. (Color online) Phase diagram of C168 at t = —4.2 eV,
t, = —0.1 eV. (a) Ground state energy of the spin-polarized and spin-
unpolarized C168 and (b) the nearest-neighbor up-spin density matrix
element of the spin-unpolarized C168 as a function of screening
strength « calculated with Hubbard U and full HF approaches.
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FIG. 9. (Color online) Position of the bright degenerate singlet
and the bright-singlet—dark-triplet separation as a function of «.

parameter ¢ results in a phase transition at lower x values.
However, in Hubbard U we do not observe a pronounced spin
separation compared to full HF.

We now discuss the evolution of the exciton spectra as a
function of ¢ and « in the semiconducting phase. Figure 9(a)
presents the results of the calculated energy of the bright
degenerate singlets and A g, 7 while the separation between the
bright singlet and the lowest-energy dark triplet as a function
of ¢ and « is given in Fig. 9(b). We see that the energy of the
bright singlets weakly depends on « but varies with tunneling
matrix element ¢ from ~1 eV for r = —2 eV to ~2 eV for
t = —4.2 eV. The bright-singlet—dark-triplet separation Ag,r
is due to electron-electron interactions and is influenced by
the dielectric constant « rather than the hopping element 7. For
t = —4.2¢eV, Agr varies from 0.15 eV for k ~ 6 to 0.35 eV
atk ~ 2.

We now compare the calculated absorption spectra with
experiment. Figure 10(a) shows the measured [61] and
calculated absorption spectra for k = 5.0 and t = —4.2 eV.
We have used Gaussian broadening in continuous plots and
added 10% of the oscillator strength of the brightest peak to
the dark singlets since they may contribute to absorption if the
symmetry is broken due to, e.g., charge and spin fluctuations
in the surrounding fluid. We see that the measured absorption
spectra show an absorption threshold around E = 1.8 eV, a
peak at E = 2.25 eV, and a reduced absorption strength up
until £ =3 eV. Our preliminary interpretation assigns the
peak in the measured absorption spectrum at £ = 2.25 eV
to the bright-singlet excitons while we predict the absorption
threshold as due to dark singlets, which dictates the choice of
t and k. The calculated absorption spectrum can reproduce the
position of the absorption peak due to bright excitons followed
by a gap. However, the singlet-triplet splitting is significantly
underestimated when compared with experiment.

A. Effect of reduced size and symmetry: N = 132 colloidal
graphene quantum dot

We now proceed to discuss the effect of reduced size and
symmetry on the optical properties of CGQDs. C132, shown
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FIG. 10. (Color online) Absorption spectrum of C168 (upper
spectrum) and C132 (lower spectrum) compared with the experiment
atr = —4.2¢eV,, = —0.1 eV, and « = 5. Here, 10% of the highest
absorption peak has been assigned to absorption of dark singlets.
The red solid line is the calculated absorption. Red drop lines are
singlet absorption peaks, gray drop lines represent the location of
triplets, and the black solid line is the experimental absorption
data.

in Fig. 1, can be obtained from C168 by cutting off one corner,
and hence it lacks C3 symmetry. As a result, the degeneracy of
the top of the valence band and bottom of the conduction band
is removed and there are nonzero dipole elements between all
CB and VB levels. The degeneracy of the high-energy bright
singlets is removed and the low-energy dark singlets acquire
nonzero oscillator strength. Figure 10(b) shows the calculated
and measured absorption spectrum for C132. Due to reduced
size and increased confinement of Dirac fermions, the C132
absorption spectrum is blueshifted compared to C168, both
in experiment and in theory. The calculated spectra show the
splitting of the bright-singlet exciton peak. The splitting is
not visible in experiments on ensembles of CGQDs in a fluid.
Again, the singlet-triplet splitting is underestimated compared
to experiment.

V. CONCLUSIONS

We presented a microscopic theory of electronic and optical
properties of colloidal graphene quantum dots (CGQDs)
based on the tight-binding, Hartree-Fock, and configuration
interaction approaches. The low-energy exciton spectrum
is predicted to consist of two bright-singlet exciton states
corresponding to two circular polarizations of light and a
lower-energy band of two dark singlets and 12 dark triplets.
The effects of symmetry, size, shape, screening, band-gap
renormalization, electron-hole correlations, and many-body
corrections are analyzed. The theoretical results are com-
pared with experimental absorption spectra. While a good
overall agreement is found, the singlet-triplet splitting is
underestimated. Future theoretical work should improve on the
screening of the Coulomb interaction and the effects of lattice
vibrations on the absorption and emission spectra. Future
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experimental work should attempt to identify the degenerate
singlet states in C168 and their splitting in C132 colloidal
graphene quantum dots.
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