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This paper explores the potential capabilities of fuzzy and genetic fuzzy system
approaches in urban trip distribution modelling with some new features. First, a
simple fuzzy rule-based system (FRBS) and a novel genetic fuzzy rule-based
system [GFRBS: a fuzzy system improved by a knowledge base learning process
with genetic algorithms (GAs)] are designed to model intra-city passenger flows
for Istanbul. Subsequently, their accuracy, applicability and generalizability
characteristics are evaluated against the well-known gravity- and neural network
(NN)-based trip distribution models. The overall results show that: traditional
doubly constrained gravity models are still simple and efficient; NNs may not
show expected performance when they are forced to satisfy trip constraints;
simply-designed FRBSs, learning from observations and expertise, are both
efficient and interpretable even if the data are large and noisy; and use of GAs in
fuzzy rule-based learning considerably increases modelling performance,
although it brings additional computation cost.
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Introduction

In recent decades, many techniques have been proposed for each step of travel

demand analysis. Among them, trip distribution has probably been the most

attractive field of demand analysis, especially given the widespread use of gravity

models. Transportation researchers and practitioners have recently become more

interested in exploring the capability of applying soft computing (computationally

intelligent) techniques to real transportation problems. Research in more effective

and predictive methodologies in spatial interaction and trip distribution modelling

has also led to some pioneering studies in this area. Many scholars have proposed

new modelling procedures to forecast aggregate interactions using neural networks

(NNs), fuzzy logic (FL) and genetic algorithms (GAs). The initial experiences with

these techniques have been encouraging, and the overall results suggest that NNs, FL

and GAs can be used successfully in spatial interactions models.

From our point of view, use of fuzzy set theory and FL are very promising in

modelling spatial interactions for several reasons: (1) these methods are simple,

flexible and equation-free; (2) they provide an opportunity to incorporate expert

knowledge into the modelling procedure, a process that may increase the interpret-
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ability of the analysed system; and (3) they are capable of increasing the accuracy of

the estimations when hybridized with GAs or NNs. The pioneering studies of Kalic

and Teodorovic (1996, 2003) showed the prospective use of fuzzy and genetic fuzzy

systems (GFSs) in trip distribution modelling. They designed a fuzzy rule-based
system (FRBS) and a genetic fuzzy rule-based system (GFRBS) in their consecutive

studies to estimate air passenger flows from origin outflows and destination inflows.

However, in comparison with the approaches centred on gravity models and NNs,

the full potential of FRBSs and GFRBSs has still not been demonstrated in trip

distribution modelling. Their efficiency, accuracy, applicability and interpretability

are still under investigation. In particular, the applicability of GFRBSs to the

estimation of intra-city passenger flows has not previously been investigated. They

offer high-quality predictions, but their computational challenges with an additional
friction variable are not known.

With this background, this paper attempts to set out an FRBS and a GFRBS for

modelling intra-city passenger flows in Istanbul. Our primary interest was to

contribute to the knowledge and literature on using such models for urban trip

distribution modelling. Another objective was to compare and evaluate the accuracy,

applicability and generalizability of such models to that of well-known trip

distribution models in a complex real-world case. For this purpose, a doubly

constrained gravity model (DCGM) and a multilayer feed-forward NN-based trip
distribution model were established as the benchmarks, against which model

performances were evaluated empirically using the 2006 Istanbul Travel Survey data.

In the following two sections, we provide a brief review of previous studies in trip

distribution modelling. Description of the study area and data, fundamentals of the

FRBSs and GFRBSs, the methodology for proposed and benchmark models and

performance criteria are then introduced in the empirical analysis section. We

conclude with a discussion of the significance of the empirical findings.

Conventional solution to a trip distribution problem

In the simplest terms, any trip distribution model estimates the number of trips

between given origins and destinations. From the early 1950s, modellers have used

several different formulations and variables to deal with this task. The use of initial

growth factor models was followed by the inception of gravity models by the mid-

1950s and then by many other aggregate or disaggregate models (including

intervening opportunity models, random utility models and activity-based models).
All models have a theoretical basis in physics, statistics, economics and behavioural

sciences. The interested reader is referred to Ortuzar and Willumsen (2001), Black

(2003), Kanafani (1983) and Oppeneim (1995) for an in-depth coverage of these

theoretical models.

With its well-known theoretical basis and various application procedures, the

gravity type of spatial interaction model has been the most commonly used trip

distribution model. Gravity models simply assume [analogously to Newton’s Law of

Universal Gravitation (1686)] that the interaction between any two zones is directly
proportional to their magnitudes and inversely proportional to the distance between

them. Over the years, this basic assumption has improved with new theoretical

insights, variables and functional forms. In particular, Wilson’s (1967, 1970) doubly

constrained model has found wide applicability among practitioners in modelling
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aggregate distributions. In a classical manner, the expression of a DCGM for the trip

distribution problem can be stated as follows:

Tij ¼ aibjPiAj f ðCijÞ (1)

ai ¼ 1
.X

j
bjAj f ðCijÞ (2)

bj ¼ 1
.X

i
aiPi f ðCijÞ (3)

where Tij is the number of trips from zone i to zone j, Pi is the total number of trips

produced in zone i, Aj is the total number of trips attracted to zone j, f (Cij) is the

friction factor related to some measure of spatial separation between zone i and zone
j and finally ai and bj are the balancing factors that ensures origin (

P
j Tij ¼ Pi) and

destination (
P

i Tij ¼ Aj) constraints are satisfied.

The spatial separation of zones is usually included in the model as a cost of

physical distance or travel time. Once the friction parameter(s) have been calibrated

for the base year trip matrix, the future pattern of trips can be easily simulated. The

well-known friction functions are: (1) exponential-cost function, f ðCijÞ ¼ e�bðCijÞ,

(2) power-cost function, f ðCijÞ ¼ C
�b
ij and (3) gamma or combined-cost function,

f ðCijÞ ¼ e�bðCijÞC
�b
ij .

There is a considerable amount of literature on gravity and spatial interaction

models that is outside the scope of this study. Fotheringham and O’Kelly (1989), Sen

and Smith (1995) and Roy (2004) provide excellent reviews.

Modelling trip distribution with soft computing techniques: a review of past studies

Many researchers have explored the feasibility of applying soft computing techniques
to real transportation problems. Lotfi Zadeh, the founder of fuzzy set theory,

describes soft computing as ‘. . .a collection of methodologies, which in one form or

another reflect the guiding principle of soft computing: exploit the tolerance for

imprecision, uncertainty, and partial truth to achieve tractability, robustness, and low

solution cost’ (Pedrycz, 1996). In parallel with other engineering sciences, NNs, FL

and GAs have been the most featured soft computing techniques used in transporta-

tion research. A number of studies have shown the applicability of these techniques to

disciplines such as traffic control and management, travel demand analysis and
transport logistics. Some of the more important traffic and transportation applica-

tions of soft computing techniques have been cited in Teodorovic and Vukadinovic

(1998), Avineri (2005) and Transportation Research Board (2007). Many scholars

have also proposed new modelling procedures to forecast trip distributions with soft

computing. The following two sections briefly review their work.

Modelling trip distribution with NNs

NNs are computational models of the human brain. Artificial neurons are

interconnected by edges constituting a layered network; the network receives input,

performs some internal process such as activations of the neurons, and produces

output (Munakata, 2008). Multilayer NNs are, at the same time, universal

approximators (Hornik, Stinchcombe and White, 1989; Hornik, 1991). Once the
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connection weights of the neurons are adjusted, in other words ‘trained’, they are

able to approximate any nonlinear function accurately (Sadek, 2007).

The application potentials of NNs have been shown in many scientific disciplines

as well as in transport geography and modelling [see Dougherty (1995) and Mussone
(1999) for a review of NNs in transport geography and traffic engineering, and

valuable works by Munakata (2008) and Haykin (1999) for a detailed theoretical

framework of NNs].

Several recent studies have also proposed use of NNs to model spatial

interactions and trip distribution. Openshaw (1993) presented the potential use of

NNs in spatial interaction modelling and Fischer and Gopal (1994) showed the

applicability and predictive accuracy of NNs in modelling the distribution of

interregional telecommunication flows. Many others have followed these pioneering
works in trip distribution modelling: Black (1995) and Celik (2004) modelled

commodity flows and Mozolin, Thill, and Lynn Usery (2000), Tillema, van

Zuilekom, and van Maarseveen (2006) and Tapkın and Akyılmaz (2009) modelled

intercity passenger flows with NNs.

Nearly all scholars compared the NNs predictive performance with conventional

spatial interaction models, which are generally unconstrained. In many cases, NNs

outperformed the conventional models, leading to the conclusion that NNs may

perform well enough to estimate spatial interaction flows in general. The only
differentiating conclusion was presented by Mozolin, Thill, and Lynn Usery (2000)

and Celik (2004). They concluded that NNs may perform better than conventional

models for a base year matrix, but they fail to outperform conventional models for

forecasting purposes.

Modelling trip distribution with fuzzy and GFSs

Fuzzy set theory and FL were first introduced by Lotfi Zadeh in 1965 and 1973 as
mathematical tools for dealing with uncertainty, imprecision and subjectivity, stated

in linguistic terms. Since then, a number of studies have been performed and a

number of practical engineering applications have been established using the concept

of fuzziness. FL has proved to be a good tool for a wide range of application areas

such as system/process control, pattern recognition, classification, machine learning,

decision-making and approximate reasoning. It has also been proven to be very

useful in nonlinear input�output mapping since Wang and Mendel (1992) and Kosko

(1994) showed in their works that fuzzy systems can be treated as universal
approximators.

FRBSs are one of the most important application areas of fuzzy set theory. As an

extension of classical rule-based systems, an FRBS uses fuzzy sets and FL to

represent and connect knowledge which is usually linguistic in nature. They have also

been applied in many traffic and transportation studies. Traffic control and

management, accident analysis and prevention, selection of transportation invest-

ments, and modelling any individual step of the many steps comprising travel

demand analysis are widely known application areas of FRBSs (Teodorović, 1994,
1999).

Apart from these applications, learning fuzzy rules and tuning fuzzy MFs are the

two key components for an FRBS. GAs have proven suitable for solving both

combinatory optimisation and parameter optimisation problems. Employing GAs to
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construct a fuzzy system which learns from examples can greatly enhance the control

performance of a fuzzy system (Chiou and Lan, 2005). This line of research has

spurred the broad use of fuzzy systems improved by a GA learning process: GFS and

in particular GFRBSs (see Cordón et al., 2004; Ishibuchi, 2007; Herrera, 2008).

With respect to trip distribution modelling, it is possible to examine several

important studies that achieved significant results using FRBSs or GFRBSs. A

pioneering FL approach to trip distribution modelling was introduced by Kalic and

Teodorovic (1996). They estimated air passenger flows among selected major

industrial cities and tourist resorts using known productions and attractions as

inputs. Their proposed FRBS produced better results than those of conventional

non-fuzzy methods. In another, Kalić and Teodorovic (2003) improved their work

achieving better results with a GFRBS design. Finally, Shafahi, Nourbakhsh, and

Seyedabrishami (2008) proposed an FRBS to predict the number of discretionary

trips in Tehran and showed its capability in predicting intra-city passenger flows.

They used travel time as an additional input and gained better results against an

unconstrained gravity model.
According to these studies, FRBSs can be used to solve trip distribution problems

efficiently and, together with the use of GAs, it is possible to achieve better model

performances. However, the performance of FRBSs against a DCGM and a NN-

based trip distribution model has not yet been investigated. Moreover, the GFRBS

has still not been adapted for the prediction of intra-city passenger flows, which adds

computational burden and complexity with an additional friction variable and

additional fuzzy rules. The present study tries to make up for these shortages with an

empirical analysis.

Empirical analysis

Description of the study area and data

The Istanbul metropolitan area was selected for the case study. It is a very complex

and challenging city region on which to test a trip distribution model. Its

transportation system consists of a high number of interaction links, nodes and

bridge crossings. Moreover, the production-attraction and friction matrices of the

metropolitan area were measured recently, in a large household survey.

Istanbul is located in northwest Turkey connecting the Marmara and Black Seas

and separating two continents: Asia and Europe. It has a population of nearly

13.8 million, or 17.8% of Turkey’s total population (TurkStat, 2010). An estimated

21 million daily trips occur in the Istanbul metropolitan area. Fifty per cent of these

trips are by foot, 14% by private cars and 36% by public transit modes. Additionally,

1.3 million daily trips are continent crossings, 1 million on bridges and the remaining

300,000 with ferries (Istanbul Metropolitan Municipality Transportation Planning

Department, 2008).

The data used in this study come from a Household Travel Survey conducted by

the Transportation Department of the Istanbul Metropolitan Municipality in 2006.

The survey was established for 451 Traffic Analysis Zones (TAZs) covering the entire

metropolitan area of Istanbul and including 90,000 households (3% sampling rate).

In the survey, which had an 80% response rate, approximately 264,000 people in
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72,000 households were surveyed and a total of 356,000 trips were recorded between

the 451 origin-destination pairs.

The observed trips (including both pedestrian and motorised trips) between a

possible 203,401 distinct interaction points were categorized by trip purpose.

Approximately 127,000 of these trips were for home-based-work (HBW), 94,000

trips for home-based-school (HBS), 115,000 trips for home-based-other (HBO) and

20,000 trips for non-home-based (NHB) trips.

Use of HBW trips was found sufficient for empirical analysis. The use of the

production-attraction (P-A) form of the HBW trip matrix was preferred for the

modelling procedure. Figure 1 shows the spatial distribution of zonal production and

attraction totals of HBW trips in the Istanbul metropolitan area. The trip matrix

includes both within and between TAZ interactions. Additionally, assigned travel

Figure 1. Zonal production and attraction totals of HBW trips in Istanbul Metropolitan

Area.
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times are chosen due to typical problems with travel time self-reported in the survey.

In summary, the modelling data are constituted from two 451 by 451 matrices: a P-A

trip matrix and a travel time matrix.

For calibration and modelling purposes, the whole HBW matrix is divided into

two equally representative rectangle matrices: a training matrix, and a testing matrix.

The training matrix includes trips from all TAZs to odd numbered TAZs (a 451 by

226 matrix); the testing matrix includes trips from all TAZs to even numbered TAZs

(a 451 by 225 matrix). The representativeness of two datasets is further tested with a

two-sample paired t-test. No statistically significant difference was found between

training, testing and whole datasets with respect to the trip length distributions

(TLDs). Observed TLDs of all three datasets are shown in Figure 2.

Modelling trip distribution with a FRBS

Main components of FRBSs

FRBSs � also known as fuzzy inference, fuzzy control or fuzzy expert systems � are

most useful in modelling complex systems that can be observed by humans. The

most common way to represent human knowledge is to form it into natural language

expressions: IF antecedent, THEN consequent. This expression is commonly referred

as an IF-THEN rule-based system. It enables use of linguistic variables as

antecedents and consequents, and logical connectives and, or, and not as well. Using

basic properties of fuzzy sets and fuzzy relations, any compound rule structure can

be decomposed to a number of simple canonical rules enabling approximation of any

non-linear system outputs (Ross, 2004).

The most commonly used FRBSs can be distinguished into two main configura-

tions: (1) Mamdani-type FRBS, proposed by Mamdani (1974) and Mamdani and

Assilian (1975) and (2) Sugeno-type FRBS, introduced by Takagi and Sugeno (1985)

and Sugeno and Kang (1988). They are all similar in their antecedents and rule-based

Figure 2. Observed TLDs of datasets.
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structures, and their ability to process human like reasoning with linguistic variables.

However, the system outputs they produce are different. The output of a Mamdani-

type FRBS is a fuzzy set, whereas the output of a Sugeno-type FRBS is generally

either a linear function of its inputs or some constants. An approximate fuzzy rule
can be formed as follows for these two distinct FRBS systems:

Mamdani � type FRBS : IF X1 is A1 and X2 is A2 and :::Xi is Ai;

THEN Y is B

Sugeno � type FRBS : IF X1 is A1 and X2 is A2 and :::Xi is Ai;

THEN Y ¼ a0 þ a1X1 þ a2X2 þ :::aiXi

The Mamdani-type FRBS used in this study is the most common FRBS in practice

and in the literature. It generally deals with mapping crisp inputs into crisp outputs
and enables the use of linguistic variables and expert knowledge. This knowledge can

easily be combined with automatically generated rules from data sets that describe

the relationship between system input and output. Either Mamdani-type or Sugeno-

type, an FRBS generally consists of four main components or steps: fuzzification,

knowledge base, inference and defuzzification as indicated by grey boxes in Figure 3.

An explanation for these steps can be seen in Ross (2004) and Cordon et al. (2001).

The proposed FRBS design

FRBSs are useful in two general contexts: (1) in situations involving uncertainty,

imprecision and partial truth and (2) in situations where investigators are mapping

any inputs into desired outputs even if there is no uncertainty and imprecision

present. In this study, we propose a Mamdani-type FRBS designed in the latter
context to solve urban trip distribution problem.

The main logic behind the proposed FRBS design and its variable structure are

the same as with the classical gravity model including three inputs and one output.

Considering an origin-destination zone pair, if zonal trip productions and trip

Figure 3. Main components of FRBSs and GFRBs.
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attractions are known along with the corresponding friction factor, the number of

interactions/trips between this zone pair can be estimated using a FRBS as a

universal approximator. Its main structure can be established starting from the

simple verbal statements as follows:

(1) IF total trip production of the origin is LOW, AND total trip attraction of the

destination is LOW, AND friction factor between corresponding origin and

destination is HIGH, THEN the interactions/trips between origin and

destination is LOW;

(2) IF total trip production of the origin is HIGH, AND total trip attraction of

the destination is HIGH, AND friction factor between corresponding origin

and destination is LOW, THEN the interactions/trips between origin and
destination is HIGH.

In order to construct a FRBS, these verbal statements are to be decomposed into a

set of overlapping fuzzy sets connected to If-Then rules with logical operators. There

are several ways to establish fuzzy partitions and a fuzzy rule base.

The present study deals with designing a simple and effective FRBS that is

mindful of the accuracy-interpretability trade-off. Therefore, a heuristic design of

fuzzy sets with few partitions is preferred for simplicity. Then, a widely-used Wang-
Mendel method (1992), also known as the one-pass method, is implied as the fuzzy

rule induction procedure. The following five steps describe the construction and

training of the proposed FRBS design:

Divide input�output spaces into overlapping regions:

The input�output pairs of trip distribution problem can be stated as,

ðP1;A1;F1;T1Þ; ðP2;A2;F2;T2Þ; :::; ðPi;Ai;Fi;TiÞ

where P, A and F (production, attraction and friction) represent input and T (trips)

represent output variables. Each variable has a domain interval which lies between

minimum and maximum values. The domain intervals are divided into a pre-

specified number of subintervals. Number and lengths of these subintervals are

determined with intuition and visual inspection. The production and the attraction
variables are divided into five, the friction variable is divided into six and the output

variable, trips, is divided into 20 fuzzy sets. The fuzzy sets are labelled with numbered

MFs representing low, moderate and high quantities roughly. For simplicity, the first

and the last MFs are established as semi-trapezoidal and the others are set as

triangular. Figure 4 illustrates the scaled fuzzy sets originally used in the study.

Generate fuzzy rule candidates from numerical data:

In this step, membership degrees [m(xi)] of each input�output point are evaluated,

and then MFs having maximum degrees are assigned as a rule candidate. Suppose

that membership degrees evaluated for any pair of data are indicated as following:

l Pi ;Ai ;Fi ;Tið Þ ! Pi 0:7 in MF1; 0:4 in MF2ð Þ; Ai 0:8 in MF1; 0:2 in MF2ð Þ;½

Fi 0:6 in MF1; 0:3 in MF2;ð Þ; Ti 0:9 in MF2; 0:2 in MF3ð Þ; �
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Assigning the corresponding MFs with a maximum degree to a logical If-Then

structure constitutes the ith rule candidate as:

ith rule candidate ! IF Pi is MF1 and Ai is MF1 and Fi is MF1;

Ti is MF2

Select one desired rule among conflicting rules:

Three input structures, P, A and F with five, five and six fuzzy partitions, respectively,

enable 150 (5*5*6) different rule antecedents (IF part of a rule) with logical ‘and’

connections. However, the training data-set consists of 101,926 observed input�
output pairs leading to a great number of conflicting rules: the rules having same

antecedents but different consequents (THEN part of a rule). The traditional

approach of the original Wang-Mendel method evaluates the strength of each rule
candidate with multiplying their membership degrees, and then selects a final rule

having the maximum strength. Since this approach does not satisfy our case due to

high number of the same rule candidates, this step is processed in a different way:

first, the weighted average of conflicting rule consequents are computed using their

observed frequencies, then the nearest consequent part to the computed weighted

average is selected as the final rule. For instance, if three different rule consequents

are observed with various frequencies as in the following example:

IF Pi is MF1 and Ai is MF1 and Fi is MF1;THEN Ti is MF2 ! frequency 25

THEN Ti is MF3 ! frequency 35

THEN Ti is MF5 ! frequency 20

a final rule consequent (MF label number) can be selected computing their

weighted average as in the following expression:

nwa ¼
ðn1 	 f1Þ þ ðn2 	 f2Þ þ :::þ ðnk 	 fkÞ

f1 þ f2 þ :::þ fk

) ð2 	 25Þ þ ð3 	 35Þ þ ð5 	 20Þ
25 þ 35 þ 20

ffi 3

where, nk and fk represent the observed label number of a MF and corresponding

frequency, and nwa represents the weighted average of the conflicting rule

consequents. Then the final statement of the rule in the above example should end

with MF3, since the computed nwa equals approximately 3.

Combine selected fuzzy rules and generate fuzzy rule base:

This step is the final step of an automated fuzzy rule-based learning procedure. Steps

one through four are automated with a self-created programme written in the
MATLAB environment. In this step, all single rules, selected in the previous step, are

combined establishing the initial fuzzy rule base.

Check out fuzzy rule base and make a limited number of changes:

Approximately 95% of the rule base has been directly generated from numerical

input�output pairs with the first four steps. Then, non-observed rules are

extrapolated making an analogy to neighbourhood rules having similar antecedents.
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Finally, the whole rule base has been checked logically and a limited number of rules

(10%) have been changed to improve the generalizability of the system. Table 1

indicates the latest appearance of the rule base.

After having established the MFs and the rule base, the next step is to select the

implementation techniques. The implication procedure of the proposed FRBS for

both training and testing purposes is described in the following steps:

Initialization: Initialize data and normalize input�output spaces into some appro-

priate range when it is required. Constitute the knowledge base.

Fuzzification: Compute fuzzy membership degrees of actual inputs using corre-

sponding MFs: crisp into fuzzy values.

Inference: Combine fuzzy sets with logical operators with appropriate implication

algorithm. Aggregate all outcomes to generate fuzzy output. In this step, both Max-

Min and Max-Product techniques are tried and the Max-Product implication is

selected.

Defuzzification: Convert aggregated fuzzy outputs into crisp outputs using a

defuzzification method. In this step, the Centroid Defuzzification method has been

selected and implied within various defuzzification techniques.

Graphical interpretation of this procedure is beneficial to understand the nature of

fuzzy trip distribution modelling. The illustration in Figure 4 shows the original

components and scales of the proposed FRBS design.

The proposed FRBS produces unconstrained trip interactions as output. Before

using it for simulation purposes, we had to ensure that the results satisfy production

and attraction constraints. Therefore, the results of the FRBS were adjusted with a

row-column balancing process in each simulation of data sets. A numerical example

of such a balancing process, which is similar to the well-known Furness Iterations

(1965), can be seen in Easa (1993).

Table 1. An appearance from the constructed rule base.

Rule number Antecedents Consequents

Rule 1 IF Pi is MF1 and Ai is MF1 and Fi is MF1 THEN Ti is MF3

Rule 2 IF Pi is MF1 and Ai is MF2 and Fi is MF1 THEN Ti is MF3

Rule 3 IF Pi is MF1 and Ai is MF3 and Fi is MF1 THEN Ti is MF4

Rule 23 IF Pi is MF5 and Ai is MF3 and Fi is MF1 THEN Ti is MF18

Rule 24 IF Pi is MF5 and Ai is MF4 and Fi is MF1 THEN Ti is MF19

Rule 25 IF Pi is MF5 and Ai is MF5 and Fi is MF1 THEN Ti is MF20

Rule 48 IF Pi is MF5 and Ai is MF3 and Fi is MF2 THEN Ti is MF11

Rule 49 IF Pi is MF5 and Ai is MF4 and Fi is MF2 THEN Ti is MF15

Rule 50 IF Pi is MF5 and Ai is MF5 and Fi is MF2 THEN Ti is MF16

Rule 148 IF Pi is MF5 and Ai is MF3 and Fi is MF6 THEN Ti is MF1

Rule 149 IF Pi is MF5 and Ai is MF4 and Fi is MF6 THEN Ti is MF1

Rule 150 IF Pi is MF5 and Ai is MF5 and Fi is MF6 THEN Ti is MF2
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Modelling trip distribution with a GFRBS

Main components of GFRBSs

FRBSs have an advantage of storing knowledge that is learned from the data itself or

set up by an expert. However, they lack a self-learning feature. If the knowledge of a

system is fixed and well-defined, it is easy to design an effective FRBS. On the other

hand, an increase in the size and complexity of the knowledge base makes the design

process of an optimum FRBS difficult. One of the recent approaches to eliminate

this learning deficiency of fuzzy systems is to enhance them using GAs.

GAs are effective tools with acceptable solutions when exploring large search

spaces in a reasonable time. First initiated by Holland (1975) and his colleagues, they

are guided random search techniques which are primarily based on Darwin’s

principles of natural selection and the genetics branch of biology. In a GA process,

genetic codes of individuals within a population evolve into a solution with the

overriding principle of survival of the fittest. New generations produce new

individuals with improved genetic codes via reproduction, crossover and mutation

operators.

Typically a GA procedure can be identified with some main steps as: the creation

of the initial population and the evaluation function; the determination of

chromosome representation and selection function; and finally the set of parameters

for genetic operators, reproduction and termination criteria. GAs can work well in a

wide variety of engineering problems. They have also attracted considerable attention

in a great number of disciplines as a methodology of search optimisation and

learning, especially after the work of Goldberg (1989).

Figure 4. Graphical illustration of the proposed FRBS design.
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As mentioned above, use of GAs in enhancing or optimizing fuzzy systems has

started a new field of research area that is called GFSs. The most widely used types

of GFSs are GFRBSs, which incorporate evolutionary techniques to achieve

automatic generation or modification of FRBS knowledge base components
(Cordon et al., 2001). Fuzzy MFs, rule base and even scaling functions can be

stored in knowledge base of a fuzzy system. In designing a GFRBS, either part of or

the entire knowledge base can be subject to optimisation by GAs. Figure 3, which

was introduced earlier, shows the integration of GAs with FRBSs.

GFRBS designs generally fall into one of four categories: (1) use of GAs to tune

the MFs under a given set of fuzzy rules; (2) use of GAs to specify the rule base with

fixed MFs; (3) use of GAs to learn both the database and the rule base

simultaneously; and (4) use of GAs to learn the database and the rule base
sequentially. The present study deals with the second category: modifying or learning

the rule base of a predefined FRBS.

Additionally, GAs can be used with various representations in genetic learning of

a rule base. These representations generally follow two different approaches: (1) the

‘chromosome�set of rules’, and the ‘chromosome�rule’ (Herrera, 2008). The first

approach, also known as the Pittsburgh Approach (Smith, 1980), is selected as the

genetic learning strategy of the proposed design. The Pittsburgh approach success-

fully solves the cooperation-versus-competition problem by evolving a population of
rule bases instead of single rules. However, it brings a much greater computational

burden which can be solved with improved genetic operators. The following section

presents implementation and design issues for the proposed GFRBS in this regards.

The reader is referred to Cordon et al. (2001) and Bodenhofer and Herrera (1997) for

further reviews of the main types of GFRBS and related genetic learning strategies.

The proposed GFRBS design

The rule base of the previously introduced FRBS was constructed with a mixed

procedure including both learning from examples and expertise. Here, the rule base

of that FRBS is learnt completely from examples with the use of GAs. In other

words, the proposed GA search for the best combination of rule consequents (MF

labels) represented with grey circles in Figure 4 introduced earlier.

Initially, a simple GA (Goldberg, 1989) was developed with basic genetic

operators and binary representation. However, due to the large combinatorial

search space and huge amount of data, the convergence failed and some additional
modifications have been introduced to improve the convergence performance of the

algorithm. Keeping the main flow chart and its binary representation, several

probabilistic and adaptive features were introduced to the genetic operators. The flow

chart in Figure 5 indicates the main steps of the proposed GFRBS fully automated

and programmed with MATLAB. A brief description of the whole procedure is given

later.

Initialization: The initial population of the GA consists of randomly generated 20

binary chromosomes encoding the whole rule set. The chromosomes have 450 binary
digits where three digits were assigned for each of the 150 rule consequents, meaning

that a rule can end with one of eight (23) alternatives. Actually, there are 20 output

MFs in the proposed FRBS, however, a few shifting consequents are meaningful for

each rule antecedent. Eventually, the maximum number of alternatives was restricted
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Figure 5. Flow chart of the proposed GFRBS design.

Figure 6. Graphical representation of encoding-decoding strategy.
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to eight in order to reduce the search space and save time. The alternatives were

obtained from available knowledge according to the conflicting rules of the FRBS

design. The most frequently observed or most probable two, four or eight rule

consequents were identified for each rule antecedent and collected in a pool. With
this rule pool, 45 rules can end with one of two, 65 rules can end with one of four, and

40 rules can end with one of eight MF alternatives constituting 6.4*1088 (245*465*840)

possible rule sets. Figure 6 shows the whole encoding-decoding strategy including a

view from the rule base and the rule pool.

Evaluation: In the evaluation step, the binary strings were decoded into the rule

sets to run the FRBS. Then output values of the FRBS for each of the rule set were

compared with the actual values. The mean square error (MSE) was used as the

fitness (error) function:

MSE ¼
PN

i¼1 ðT0
i � TiÞ

2

N
(4)

where, N is the number of data pairs, T0
i is the number of observed trips, and Ti is the

number of estimated trips. The FRBS estimated trips were also balanced to satisfy

the constraints before making the comparisons.

Reproduction: Generally in GAs, successive generations of the population should

base on transferring the best chromosomes to next generation (selection), and then

improving them with gene exchanges (crossover) and gene alterations (mutation).

The proposed GA was designed with this three step evolution process described as

follows:

� Selection: In this step ‘successful’ chromosomes, the parents, were copied to a

mating pool, then selected for crossover and mutation according to some
measure of their fitness. There are a number of ways to choose the parent

population. A mixed procedure was implemented in order to improve the

convergence performance: First, a ranking was applied, in which chromosomes

are ranked and assigned proportions only on their rank orders, not on their

absolute fitness. Then mating parents were selected with a biased roulette-wheel

for recombination. The slots of the wheel were divided according to the ranking

proportions determined with a power function (see Figure 7). Apart from these,

when generating new populations with genetic selection, crossover and mutation
operators an elitist strategy was developed. The few best chromosomes (10% of

the total population) of the former generations were directly copied to the next

generations through genetic operators. This strategy significantly improved the

GA’s performance preventing it from loss of any good solutions.

� Crossover: In the crossover step, new chromosomes (offspring) were created by

recombining two parent chromosomes with a certain probability (0.8).

Classical one-point or two-point crossovers were employed to the parent

chromosomes with equal probability. In the one-point crossover, the algorithm
chooses a point at random, called the crossover point, and exchanges the

contents to the right of this point; in the two-point crossover, the algorithm

chooses two points, and exchanges the contents between these points. Figure 7

indicates an illustration of the adopted crossover technique used in the GA.
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� Mutation: In order to achieve faster results and prevent the algorithm from a

premature convergence, two components were introduced to the classical

mutation operator. First, the assumption of a constant probability of mutation

in each generation is abandoned in favour of an adaptive one. With high

mutation probability at the start up, the population attacked to get out of from

local optima; and with low probability at the end, the population resembled

each other to find out small improvements. Second, the simple bit-flip

mutation operator has been replaced with a probabilistic (Poisson distribution)
mutation operator. This approach is an efficient and time-saving alternative of

simple bit-flip mutation. In this approach, the average number of mutations

(l�72) in each generation is determined automatically, multiplying the

population size (20), chromosome length (450) and mutation probability

(0.008). Then the number of mutations in various generations is determined

with a decreasing Poisson distribution at the start up. Finally, only in that

number of randomly selected bits in the whole population is changed (inverted)

through the generations. A graph that shows number of mutations through the
generations can be seen again in Figure 7.

Termination: Any early stopping of the GA was not seen necessary as the termination

criteria. We rather limited the evolution of the population up to 250 maximum

generations.
With the above procedure, the GFRBS design successfully converged to the best

solution. Then it was used for simulation purposes with the optimized rule base.

Figure 8 indicates both the progress of the population average and the best

individual.

Figure 7. Illustrations of crossover, ranking probability function and number of mutations

through the generations.
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Benchmark models

The DCGM, introduced earlier, was selected as the first benchmark model. A NN-

based Trip Distribution Model (NNTDM) was established as the second benchmark.

Even though debate continues, NN-based distribution models have a history of
successful use, and it is appropriate to establish a NN-based model and compare its

overall performance with the proposed FRBS and GFRBS designs. The next sections

of this paper cover calibration, training, and implementation issues for these

benchmark models.

Doubly constrained gravity model (DCGM)

Many studies have suggested statistical or numerical computational procedures to

calibrate friction parameters for gravity models (Hyman, 1969; Wilson, 1970; Evans,

1971; Sen and Soot, 1981; Dickey, 1983; Sen, 1986). Among these procedures,

statistical weighted least squares (WLS) and maximum likelihood (ML) estimations,

and numerical TLD-based estimation are found efficient for our analysis. A brief
description of these calibration techniques can be given as follow:

(1) ML estimation maximizes the likelihood function of a theoretical Poisson

distribution of interactions and is described in Sen (1986) and Fotheringham

and O’kelly (1989);

(2) WLS Estimation is based on the odds ratio technique and logarithmic

transformation proposed by Sen and Soot (1981) for rectangular interaction

matrices; and
(3) TLD-based Estimation uses a simple line search algorithm to find the best

value of b. First, trip matrices are estimated using b values in a search interval

(0�4); the TLD of the matrices are then computed, and observed and

estimated TLDs are compared with their root mean squared error (RMSE).

Figure 8. Convergence of the GFRBS design.
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The b value with the lowest RMSE score was determined as the friction

parameter. Similar procedures, but for discrete cases, can be seen in Dickey

(1983) and Transportation Research Board (1998).

Regression-based techniques and ML approaches have well-known desirable

statistical properties, and they have consistently proven their calibration abilities.

The TLD-based numerical approaches also have attractive properties. They enable a

better understanding of system behaviour, especially in instances when a great

number of inter-zonal trips are missing. The three selected principally distinct

calibration procedures gave considerably different outputs, and all of them are

included in performance comparison and model evaluation. All calibration

procedures and algorithms are realized using MATLAB, and the friction parameters
of each procedure are computed using the training data-set. The use of a power-cost

function as friction factor produces considerably more accurate estimations for the

Istanbul case. Therefore, only the results produced by the power-cost function are

presented in the analysis.

Neural network-based trip distribution model (NNTDM)

The logical structure of an NNTDM involves three inputs (production, attraction

and friction) and one output (interactions) as in the traditional trip distribution

Figure 9. An illustration of NNTDM � A three-layer feed-forward neural network with

error back-propagation.
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problem. There are many types of NN models with various functionality and

architectures. However, the subject of the previous studies cited earlier and the

present paper is a multilayer feed-forward network with an (error) back-propagation

training algorithm.

A general illustration of a NN-based distribution model, also used in this study,

is presented in Figure 9. The number of neurons in the hidden layers, the number of

hidden layers, type of transfer functions, and learning algorithms as well as the

number of inputs can be changed for proper use. In-depth explanation of a multilayer

feed-forward back-propagation network with its mathematical expressions can be

seen in Munakata (2008) and Haykin (1999).

Defining the variables and the main architecture of the network is the first step of

the NN modelling. The other steps include developing a strategy to avoid over-

training (where the network learns incorrect information/noise, instead of the general

pattern) and selecting appropriate training styles, activation functions, learning

algorithms and parameter values. In order to prevent the network from over-training

and to obtain the best generalization performance, the training data-set was further

separated randomly into two: 80% for training the network and 20% for cross-

validation. As in common practice, other network configuration and training issues

are processed by a trial-and-error selection. The complete process was realized in the

MATLAB programming environment using the Neural Network Toolbox (see

Demuth, Beale and Hagan, 2009). The trained network is then used to simulate data-

sets and to produce unconstrained trip interactions. Finally, a balancing process was

applied to predicted flows as in the FRBS design in order to satisfy the trip

constraints. Table 2 indicates the experimental and selected cases for network

Table 2. NNTDM implementation issues: experimented and selected cases.

Implementation issues Experimented cases Selected cases

Normalization technique � Z-score normalization

� Min-max normalization

� Min-max

normalization

Number of hidden layer

neurons

� 3-6-9-12-15

� 20-25-30-40

� 9

Activation function of

hidden layer

� Hyperbolic tangent function

� Logistic sigmoid function

� Logistic sigmoid

Activation function of

output layer

� Hyperbolic tangent function

� Logistic sigmoid function

� Linear function

� Logistic sigmoid

Training style � Batch training

� Incremental training

� Batch training

Learning algorithm � Gradient descent with learning rate

� Gradient descent with adaptive learning

rate and momentum term

� Levenberg-marquardt

� Levenberg-

marquardt

Performance measure � Mean squared/absolute error

� r square

� Mean squared

error

� r square

Termination criteria � Maximum epochs

� Validation performance

� Validation

performance
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training, and Figure 10 shows the convergence of the network with the Levenberg-

Marquardt learning algorithm.

Performance measure and goodness-of-fit statistics

Over the years, various goodness-of-fit statistics have been proposed to measure the

accuracy of trip distribution model estimations. Four are found to be more

representative in measuring the accuracy levels of models: (1) Standardized Root

Mean Squared Error (SRMSE), (2) Coefficient of Determination (R2), (3) Trip

Length Distribution Root Mean Squared Error (TLD RMSE) and (4) Mean Travel
Cost Error (MTCE). Extensive reviews for these statistics can be found in Smith and

Hutchinson (1981), Knudsen and Fotheringham (1986) and Fotheringham and

Knudsen (1987). The following equations give mathematical expressions of the

selected goodness-of-fit statistics:

SRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij ðT0

ij � TijÞ
2

I � J

s ,P
ij ðT0

ij Þ
I � J

(5)

R2 ¼ 1 �
P

ij ðT0
ij � TijÞ

2P
ij ðT0

ij � �T0Þ2
(6)

TLD � RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðF 0
i � FiÞ

2

n

s
(7)

MTCE ¼
P

ij ðT0
ij � CijÞP
ij T0

 !
�

P
ij ðTij � CijÞP

ij T

 !
(8)

where,

T0
ij is the number of observed trips from zone i to zone j,

Figure 10. NNTDM back-propagation training with Levenberg-Marquardt learning.
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Tij is the number of estimated trips from zone i to zone j,
�T0 is the mean of the observed trips,

I is the number of origins,

J is the number of destinations,
R�T0 is the total number of observed trips,

R�T is the total number of estimated trips,

Cij is the travel cost/time between origin i and destination j,

F 0
i is the observed TLD percentage for the ith time interval,

Fi is the estimated TLD percentage for the ith time interval, and

n is the number of time intervals associated with trip length frequencies.

Empirical findings

This section presents the goodness-of-fit statistics of the previously introduced trip

distribution models: a DCGM with Maximum Likelihood (DCGM ML) estimation,

a Doubly Constrained Gravity Model with Weighted Least Squares (DCGM WLS)

estimation, a Doubly Constrained Gravity Model with Trip Length Distribution

(DCGM TLD)-based estimation, a NN-based Trip Distribution Model (NNTDM),

a FRBS design and a GFRBS design. In the beginning, simulations for each of the

training, testing and whole data-sets were produced and their performance in each

case was measured with the above mentioned goodness-of-fit statistics. Finally, the

performance of the models were measured further with respect to the results of

district-based aggregation and trip share comparisons among intra-zonal vs. inter-

zonal, intra-district vs. inter-district and bridge crossing vs. not bridge crossing trips.

Table 3. Model results � goodness-of-fit statistics.

Goodness-of-fit

statistics

DCGM

ML Est.

DCGM

WLS Est.

DCGM TLD

Based Est. NNTDM

FRBS

design

GFRBS

design

Training results

SRMSE 4.17 4.16 4.29 4.75 4.10 3.42

R2 0.86 0.86 0.85 0.82 0.87 0.90

TLD RMSE 0.10 0.18 0.07 0.11 0.11 0.07

MTCE �2.77 �1.65 �4.18 �4.14 �4.29 �1.07

Testing results

SRMSE 4.25 4.34 4.27 4.42 4.15 3.91

R2 0.78 0.78 0.77 0.75 0.78 0.81

TLD RMSE 0.15 0.22 0.11 0.12 0.10 0.05

MTCE �2.89 �1.71 �4.39 �4.19 �4.25 �0.85

Whole data results

SRMSE 4.88 5.10 4.82 5.02 4.56 4.30

R2 0.77 0.77 0.77 0.75 0.79 0.82

TLD RMSE 0.17 0.26 0.11 0.13 0.09 0.08

MTCE �2.68 �1.44 �4.33 �4.30 �3.19 �0.33

District-based results

SRMSE 0.78 0.72 0.88 1.04 0.86 0.63

R2 0.95 0.95 0.94 0.92 0.95 0.97
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The training results reported in Table 3 show the learning capacity of the

implemented trip distribution models. As an overall evaluation, it can be stated that

the GFRBS design demonstrated a certain superiority for almost all goodness-of-fit

statistics, followed by the DCGMs and the FRBS design. The DCGM ML

estimation was good for both micro- and macro-level statistics, whereas the

DCGM WLS estimation was good at the micro level, and the DCGM TLD-based

estimation was good for macro level statistics. The FRBS design achieved better

results when the micro-level statistics are taken into account. It has the second best

scores for SRMSE and R2 but the second worst scores with the MTCE and TLD

RMSE. Finally, the NNTDM obtained unexpected results in the training phase with

the lowest SRMSE and R2 scores. The reason for this can be that one of its

implementation procedures was subject to row-column balancing, and was stopped

to train before a possible over-training problem occurred.

The testing results of the models are more important than the training results.

They represent the predictive ability of the models better, and give an idea of the

generalizable performance of the trained models. According to the testing scores

shown in Table 3, the GFRBS design outperforms all the other models. In

comparison to the training results, the GFRBS design recorded a small reduction

in SRMSE and R2 scores and improved MTCE and TLD RMSE scores. This is a

desired and expected situation that the GFRBS design has successfully learned the

macro behaviour of the analyzed system. A similar observation is valid for the FRBS

design. On the contrary to training, the FRBS design showed a better performance

than DCGMs in the testing case. The FRBS design achieved the second best

performance with respect to the three important statistics � SRMSE, R2 and TLD

RMSE scores. Apart from these, it can be said that the DCGM ML and DCGM

TLD-based estimations preserved their performance and produced fairly good

predictions in the testing case. However, the DCGM WLS estimation was worse

especially when its TLD RMSE score is taken into account. The NNTDM model

scores come close to the other models in the testing case, its SRMSE score decreased

and its TLD RMSE score remained nearly the same. This is meaningful since it

shows that the over-training strategy has worked well with the NNTDM.

The GFRBS design has again achieved the best scores when the models are

simulated with the whole data-set. It obtained SRMSE, R2, TLD RMSE and MTCE

scores that are consistent with the training and testing cases. The FRBS design

showed the second best performance in whole data simulation, especially with the

SRMSE, R2 and TLD RMSE scores. The DCGM ML and DCGM TLD-based

estimation followed the FRBS design with a similar performance and fairly good

predictions. The DCGM WLS estimation showed a worsening performance in whole

data simulation; on the contrary to training and testing, its performance is poorer

than the NNTDM with the worst TLD RMSE and SRMSE scores.

As it can be observed in the majority of previous cases, the proposed GFRBS

design produced superior predictions. The FRBS design, the DCGM TLD-based

estimation and the DCGM ML estimation in turn followed the GFRBS design. They

also achieved high levels of accuracy and good levels of generalizability after the

GFRBS design. The DCGM WLS estimation and the NNTDM did not show the

expected performance; the performance of the DCGM WLS estimation especially

decreased in both the testing and whole data-set simulations.
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Apart from these, as indicated with the graphical analysis of the TLDs in Figures

11 and 12, all the models captured the general trend of the observed TLD, except for

the DCGM WLS estimation. In particular, the GFRBS design and the DCGM

TLD-based estimation provided a near perfect fit to the observed TLDs. In addition,

when the regression plots of the models � shown in Figures 13 and 14 � are analyzed,

it can be said that all models showed a slight tendency to under-predict larger flows

and over-predict smaller flows. This can be explained by the general structure of the

observed flow matrix that mostly involves a small amount of flows. The GFRBS

design and the DCGM WLS estimation is still successful in this respect. They

produced considerably good predictions with a slope score close to unity.
The performance of the models was further tested with a district-based

aggregation of trip interchanges. All the model results for TAZs were aggregated

within the corresponding 31 districts in Istanbul metropolitan area. Then observed

and predicted flows for the districts were compared using two micro level goodness-

of-fit statistics as shown in Table 3. As in previous cases, the GFRBS design

outperformed the other models. In general all models achieved good results, having

R2 scores of at least 0.92.

Figure 11. Observed-predicted TLDs � training data set.
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Finally, the spatial distribution of modelled trip interchanges was further

measured with a trip share comparison. Observed and modelled trip shares among

intra-zonal vs. inter-zonal, intra-district vs. inter-district and bridge crossing vs. not

bridge crossing trips were measured. The results are shown in Table 4. Nearly all the

models successfully estimated trip shares with an error range of approximately

10�15% in most cases. Surprisingly, the DCGM WLS estimation outperformed the

other models. We had mandatorily seeded the trip matrix with a very small number

before calibrating the DCGM WLS estimation. The spatial distribution of the

modelled trip interchanges could be affected by this implementation leading to a

better performance of the model with respect to trip share comparison.

Conclusions

The general aim of this study was to set out a fuzzy and a GFS to estimate intra-city

passenger flows, and thus contribute to the literature representing their potential use

in trip distribution modelling. For this purpose, a simple Mamdani-type FRBS was

developed to estimate trip interchanges in the Istanbul metropolitan area. Its rule

base and fuzzy partitions were constructed with a mixed procedure including both

learning from examples and expertise. Aggregate variables of the traditional trip

Figure 12. Observed-predicted TLDs � testing data set.
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distribution problem (production, attraction and friction) were used as inputs. The

rule base of the proposed FRBS was then further improved with a novel GFRBS

design. The rule-based learning process in the GFRBS design was shifted to a

combinatorial optimization problem and solved with a probabilistic and adaptive

GA. Both of the two model outputs were enforced to satisfy production and

attraction constraints in order to use them as part of sequential travel demand

modelling. The performance of the models was evaluated comparatively with respect

to the benchmark models: a traditional DCGM and a multilayer feed-forward NN.

According to the results achieved, a straightforward consequence is that the FRBSs

and the GFRBSs can be used to predict intra-city passenger flows with a high level of

accuracy.

The present study also examined the proposed and benchmark models in many

respects and achieved a variety of empirical results. In addition, all models were

evaluated according to their simplicity, predictive ability, interpretability, flexibility,

data dependency, etc. in trip distribution modelling. The main findings of the

empirical analysis, shown in Table 5, can be summarized for the doubly constrained

trip distribution case as follows:

Figure 13. Regression plots � training data set.
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(1) traditional DCGMs are still simple and efficient; they are stable and robust,

yet, they suffer from one-parameter generalization; they should be tried first in

almost every case, at least for a comparison; they offer better predictions with

ML or TLD-based parameter estimation.

(2) NNs may not show expected performance if they are forced to satisfy

production-attraction constraints; they are unstable, non-interpretable and

case/data dependent; their equation-free structure and potential usage with
additional inputs provide an outstanding advantage.

(3) simply-designed FRBSs, learning from numerical data and expertise, are both

interpretable and efficient in forecasting trip interchanges even if the data is

large and noisy; they do not require data and can be established with only

basic human reasoning; additional inputs can be introduced to the model

easily as in NNs.

(4) GFRBSs offer a high level of accuracy in trip distribution modelling, although

demand additional computation cost; they should be preferred especially when
high accuracy is needed or when system complexity increases and classical rule

based learning approaches fail.

Figure 14. Regression plots � testing data set.
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In conclusion, fuzzy and GFSs offer an alternative to traditional gravity models and

NNs in modelling trip distributions. The present study has demonstrated their

applicability to a challenging city region with a desired level of accuracy and

interpretability. It differs from similar previous works (Kalic and Teodorovic, 1996,

2003 and Shafahi, Nourbakhsh, and Seyedabrishami, 2008) in several respects: for

the first time a genetic fuzzy system has been proposed and applied to model intra-

city passenger flows; original solutions to the fuzzy rule base learning problem have

been developed; and an extensive performance comparison has been established

among the fuzzy, genetic fuzzy, DCGM and NN-based trip distribution model.

Further research could fruitfully explore the design of such fuzzy and GFSs with

some new features, including: incorporating additional variables, for instance a zonal

land use variable or a geographical barrier can be introduced as additional inputs;

with the same variables but in different configurations such as with a Sugeno-type

FRBS; with innovative evolutionary algorithms and learning strategies; and most

Table 4. Observed and modelled trip shares: intra-zonal vs. inter-zonal, intra-district vs.

inter-district and bridge crossing vs. not bridge crossing trips.

Trips OBSERVED

DCGM

ML

estimation

(%)

DCGM

WLS

estimation

(%)

DCGM

TLD

based

estimation

(%)

NNTDM

(%)

FRBS

design

(%)

GFRBS

design

(%)

Intra-

Zonal

24.5% 24.3 27.0 21.4 18.6 18.5 21.7

Percentage

Error

� �1.1 �9.8 �12.9 �24.1 �24.4 �11.8

Inter-

Zonal

75.5% 75.7 73.0 78.6 81.4 81.5 78.3

Percentage

Error

� �0.3 �3.20 �4.2 �7.8 �7.9 �3.8

Intra-

District

47.2% 42.7 45.7 39.4 38.8 38.5 42.7

Percentage

Error

� �9.4 �3.2 �16.5 �17.7 �18.4 �9.3

Inter-

District

52.8% 57.3 54.3 60.6 61.2 61.5 57.3

Percentage

Error

� �8.4 �2.8 �14.7 15.8 16.4 8.3

Bridge

Crossing

6.8% 8.2 7.4 9.2 10.5 7.7 5.7

Percentage

Error

� �20.4 �8.6 �34.4 �53.1 �12.1 �15.8

Not

Bridge

Crossing

93.2% 91.8 92.6 90.8 89.5 92.3 94.3

Percentage

Error

� �1.5 �0.6 �2.5 �3.8 �0.9 �1.2

Note: The numbers given in bold show minimum scores for the percentage errors.
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importantly with an approximate FRBS design that works properly in a low quality

data environment or under uncertainty and imprecision. Since field-collected data

generally involves uncertainty, vagueness and incompleteness in transportation

geography, FRBSs provide an outstanding opportunity to deal with these drawbacks.
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Criteria

DCGM

ML

estimation

DCGM

WLS

estimation

DCGM

TLD based

estimation NNTDM

FRBS

design

GFRBS

design

Mathematical

simplicity

Moderate Moderate Strong Moderate Strong Moderate

Application

simplicity

Strong Strong Strong Moderate Strong Weak

Statistical

interpretability

Strong Strong Strong Unknown Unknown Unknown

System

interpretability

Moderate Moderate Moderate Weak Strong Strong

Prediction ability Moderate Weak Moderate Weak Moderate Strong

Improvement

with additional

variables

Weak Weak Weak Strong Strong Strong

Dependency to

data existence

Strong Strong Strong Weak Strong Weak

Hybridization

ability

Weak Weak Weak Strong Strong Strong

Computational

costs

Strong Strong Strong Moderate Strong Weak

Ready to use

software

packages

Strong Weak Strong Strong Strong Weak

Transportation Planning and Technology 197

http://dx.doi.org/10.1007/3-540-32400-3_2


Cordon, O., F. Herrera, F. Hoffmann, and L. Magdalena. 2001. Genetic Fuzzy Systems:
Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. Singapore: World Scientific.

Cordón, O., F. Gomide, F. Herrera, F. Hoffmann, and L. Magdalena. 2004. ‘‘10 years of
Genetic Fuzzy Systems: Current Framework and New Trends.’’ Fuzzy Sets and Systems 141
(1): 5�31. doi:10.1016/S0165-0114(03)00111-8.

Demuth, H., M. Beale, and M. Hagan. 2009. Neural Network Toolbox 6: Users Guide. Natick,
MA: The MathWorks, Inc.

Dickey, J. W. 1983. Metropolitan Transportation Planning. 2nd ed. New York: McGraw-Hill.
Dougherty, M. 1995. ‘‘A Review of Neural Networks Applied to Transport.’’ Transportation

Research Part C: Emerging Technologies 3 (4): 247�260. doi:10.1016/0968-090X(95)00009-8.
Easa, S. M. 1993. ‘‘Urban Trip Distribution in Practice 1: Conventional Analysis.’’ Journal of

Transportation Engineering 119 (6): 793�815. doi:10.1061/(ASCE)0733-947X(1993)119:6(793).
Evans, A. W. 1971. ‘‘The Calibration of Trip Distribution Models with Exponential or Similar

Cost Functions.’’ Transportation Research 5 (1): 15�38. doi:10.1016/0041-1647(71)90004-9.
Fischer, M. M., and S. Gopal. 1994. ‘‘Artificial Neural Networks � A New Approach to

Modeling Interregional Telecommunication Flows.’’ Journal of Regional Science 34 (4):
503�527. doi:10.1111/j.1467-9787.1994.tb00880.x.

Fotheringham, A. S., and D. C. Knudsen. 1987. Goodness-of-Fit Statistics. Norwich: Geo
Books.

Fotheringham, A. S., and M. E. O’Kelly. 1989. Spatial Interaction Models: Formulations and
Applications. Dordrecht: Kluwer Academic Publishers.

Furness, K. P. 1965. ‘‘Time Function Iteration.’’ Traffic Engineering & Control 7: 458�460.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.

Boston: Addison-Wesley.
Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2nd ed. India: Pearson

Prentice Hall.
Herrera, F. 2008. ‘‘Genetic Fuzzy Systems: Taxonomy, Current Research Trends and

Prospects.’’ Evolutionary Intelligence 1 (1): 27�46. doi:10.1007/s12065-007-0001-5.
Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor: University of

Michigan Press.
Hornik, K., M. Stinchcombe, and H. White. 1989. ‘‘Multilayer Feedforward Networks are

Universal Approximators.’’ Neural Networks 2 (5): 359�366. doi:10.1016/0893-6080(89)
90020-8.

Hornik, K. 1991. ‘‘Approximation Capabilities of Multilayer Feedforward Networks.’’ Neural
Networks 4 (2): 251�257. doi:10.1016/0893-6080(91)90009-T.

Hyman, G. M. 1969. ‘‘The Calibration of Trip Distribution Models.’’ Environment and
Planning A 1 (1): 105�112. doi:10.1068/a010105.

Ishibuchi, H. 2007. ‘‘Multiobjective Genetic Fuzzy Systems: Review and Future Research
Directions.’’ In Fuzzy Systems Conference, FUZZ-IEEE 2007. IEEE International, 1�6.
Imperial College, London, UK, July 23�26.

Istanbul Metropolitan Municipality Transportation Planning Department. 2008. Istanbul
Transportation Master Plan Household Survey: Analytic Study and Model Calibration.
Istanbul: Istanbul Metropolitan Municipality.
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