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In this study, 3D scanning systems that utilize a pair of laser stripes are studied. Three types of scanning
systems are implemented to scan environments, rough surfaces of near planar objects and small 3D
objects. These scanners make use of double laser stripes to minimize the undesired effect of occlusions.
Calibration of these scanning systems is crucially important for the alignment of 3D points which are
reconstructed from different stripes. In this paper, the main focus is on the calibration problem, following
a treatment on the pre-processing of stripe projections using dynamic programming and localization of
2D image points with sub-pixel accuracy. The 3D points corresponding to laser stripes are used in an
optimization procedure that imposes geometrical constraints such as coplanarities and orthogonalities.
It is shown that, calibration procedure proposed here, significantly improves the alignment of 3D points
scanned using two laser stripes.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Reconstruction of 3D surface geometry is an active research
area in both computer vision and computer graphics. Due to phys-
ical and geometrical varieties of object surfaces, many different ap-
plication specific scanning systems, methods and algorithms have
been developed in order to gather 3D surface geometry.

Stereo imaging methods, especially two-frame stereo methods
are widely studied in computer vision. Solving the stereo corre-
spondence problem is the fundamental task in these methods.
In [1] a detailed taxonomy and performance analysis of these
methods can be found. In traditional stereo imaging, the sensor
position is changed where the scene illumination is preferably kept
constant. On the contrary, in photometric stereo techniques [2,3],
the sensor position is fixed and the scene illuminant position is
changed accordingly.

Methods for determining depth from focus [4] require multiple
images of the scene taken with different focal parameters, where
the depth from defocus methods ([5] and [6]) requires fewer im-
ages. In both types of methods the scene is considered as lamber-
tian. For semiglossy dielectric materials, shape from polarization
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can be used. In [7] and [8] polarization imaging methods are used
to find local surface normals and hence the surface shape.

Another common method to capture 3D information is to use
structured light. Using projection of a coded light pattern, it is
possible to capture a depth image from a single image frame. Sev-
eral different coding strategies have been used for generating light
patterns [9–11]. Structured light patterns are also shown to be ef-
fective when used in conjunction with stereo techniques [12].

The projection of complex light patterns generally requires
bulky and expensive projection devices that consume excessive
amount of power. In many applications where scanners need to be
mounted on a moving platform, simple laser emitters that project
light stripes can be used instead. In such implementations, the
main problem is the calibration of the light source [13–15].

Laser stripe based scanner systems suffer from a natural side ef-
fect if the light source is at a fixed position with respect to camera.
A shadow is produced when the light stripe is blocked from the
viewpoint by a surface. In this study two independent line lasers
are preferred in order to minimize the effect of scene occlusions.
This setup is preferable to a single line laser, multiple cameras sce-
nario due to significantly reduced cost and flexibility in different
types of scanning problems.

The only constraint imposed here about positioning the two
light sources is that the stripes should be visible in different halves
of the image frame. This study mainly focuses on the calibration
of two independent line lasers with respect to camera reference
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Fig. 1. (a) Environment scanner (Scanner-1), (b) surface scanner (Scanner-2), (c) object scanner (Scanner-3).
frame. Geometrical constraints like coplanarities and orthogonali-
ties are imposed in the scene. In [16], calibration techniques us-
ing similar geometrical constraints are reported. However their
method needs user interaction to identify planar surfaces. In our
study the detection of planar surfaces is performed automatically
during calibration. Once the calibration is performed, a 3D model
can be reconstructed from the point data acquired simultaneously
using the two laser stripes. In [17] a least squares solution that
optimizes linear transformations corresponding to light sources is
searched using a complex calibration object that produces 18 dis-
tinct point positions. Although their test setup is similar to one
of the scanners studied here (Scanner-2 in Fig. 1), the main differ-
ence in our approach is that it attempts to generalize double stripe
scanning problem of different possible scanning scenarios using a
simple calibration object.

The conceptual drawings for the proposed scanners are shown
in Fig. 1. The first proposed scanner (i.e. Scanner-1) is an environ-
ment scanner with two line lasers. We presented an initial version
of this scanner in [18]. The second scanner (i.e. Scanner-2) has the
same scanning head (i.e. a camera and two line lasers). The dif-
ference from the first one is that Scanner-2 is designed to scan
surfaces of near planar objects placed on floor. The third scan-
ner (i.e. Scanner-3) is used to scan objects by using a turntable.
The main difference for Scanner-3 is that unlike in the previous
scanner models, the camera and lasers are kept stationary in front
of a turntable. The object is placed on the turntable and the scan-
ning is performed by turning the turntable by angular increments
for 360◦ .

In this study, the perspective camera model is used. For conve-
nience the axis naming convention in [19] is adopted. As seen in
Fig. 2, the image plane is considered to be parallel to the XY plane
where f is the focal distance measured +Z direction.
Fig. 2. Perspective camera model as given in [19].

2. The geometry of double stripe 3D laser scanners

In this work, we have built three types of scanners with a stan-
dard CCD camera and two low cost line lasers. Each one of the
scanners is designed to handle a specific need for a 3D scan.

In Scanner-1, the scanning head is placed on a platform which
can be controlled by computer and makes “pan” movement
(see Fig. 1(a)). Although, the tilt action is also possible on the
implemented platform, we only used the pan movements in this
study. This radial motion of the platform enables the scanner to
scan a surrounding environment. The laser emitters are placed
such that they are approximately parallel to each other.
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Fig. 3. Usage of two laser sources alleviates the effect of scene occlusions. The calibration block shown in Fig. 9 is used as test object.

Fig. 4. Sample scan with Scanner-1. The scene consists of a person sitting in front of a wall. (a) The point data which is generated by the data from the right laser. (b) The
point data which is generated by the data from the left laser. (c) Side view of merged data. (d) Top view of merged data.
Scanner-2 is designed to scan surfaces of objects placed on
floor. The scanner formation is depicted in Fig. 1(b). Camera and
lasers are attached to a platform which is capable of moving in X
axis. This linear motion enables us to scan a surface continuously
along X direction.

Lastly, Scanner-3 is designed to scan 3D objects. As in Fig. 1(c),
scanning head is fixed. The corresponding object is placed on a
turntable. By rotating the object for 360◦ , object geometry is gath-
ered.

In all three cases, the usage of two line lasers alleviates the
effect of scene occlusion. This can be seen in a reconstruction
result performed by Scanner-3 in Fig. 3. The scanning results in
Figs. 3(a) and 3(b) are individual scans of left and right lasers re-
spectively. Once these results are merged together (see Fig. 3(c)),
they complement each other and occlusion effects are significantly
eliminated.

3. Problem statement

The scanning systems used in this work produce two sets of
scanning data which are due to two laser beams. Using two line
lasers minimizes the effect of occlusions in the scanning results
as shown previously, but it also complicates the calibration of the
system. In order to use the scanners we need accurate informa-
tion about position and orientation of the laser sources to achieve
coherent scanning results. In this work, by using known geomet-
rical constraints in the scene, an objective function is defined and
Nelder–Mead minimization procedure is used to find the scanner
parameters corresponding to a minimum error.

In Fig. 4, scanning results of a person sitting in front of a wall
can be seen. This scan data is obtained by using Scanner-1. Fig. 4(a)
is the point cloud data which is generated by using the laser
source on the left (laserL ). Similarly Fig. 4(b) is generated by the
right source (laserR ). When these scanning results are brought to
the same coordinate space it can be seen that the merged sets do
not correctly overlap (e.g. Figs. 4(c) and 4(d)). This example shows
that using the best-effort manual measurements for the system pa-
rameters may provide realistic results for individual laser stripes
but the combined data severely suffer from the calibration errors.

4. Capturing point clouds from double stripes

4.1. Camera calibration

The intrinsic camera calibration is performed as first step. Mat-
lab Toolbox for Camera Calibration [20] which is a MATLAB™
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Fig. 5. (a) A sample captured frame with lens distortion. (b) Undistorted version of (a). Straightness of the right laser stripe is a visible cue on the presence of lens distortion.
(c) Initial estimation of stripe positions by multi-segment shortest path algorithm. The actual grayscale images are inverted. Boxed regions are shown in detail in the
upper-right corner of each figure.
implementation based on [21] is used to find intrinsic camera
parameters. These parameters are used in the point cloud gener-
ation procedure which is described in the following section.

4.2. Image pre-processing

After calibrating intrinsic camera parameters, the image acqui-
sition process is started. The ideal environment is a dark room
with surrounding objects. In this scenario the sensor noise be-
comes significant. To eliminate the sensor noise, median temporal
filtering is used. For each stop of the actuators, five consecutive
frames are captured and median-filtered. A temporal-filtered frame
is captured as in Fig. 5(a) and the undistorted (i.e. corrected from
radial distortion using lens calibration results) version can be seen
in Fig. 5(b).

4.3. Path finding in sub-pixel accuracy

The ambiguities caused by the varying strength of reflected
laser light, multiple reflections and independent light sources can
be reduced by detecting dominant paths that are most likely due
to the reflection of projected stripes. In this work, this is done by
using a dynamic programming [22] implementation which com-
putes the top–down shortest path of pixels inversely weighted by
their brightness values. The shortest path algorithm is modified
to extend the horizontal neighborhood of each pixel using a mar-
gin of pixels on each side. The jumps in the stripe reflections due
to surface and depth variations are handled by robustly detecting
optimal paths in multiple segments. Fig. 5(c) illustrates detected
segments in the presence of discontinuities. Besides finding the
optimal paths, this algorithm reduces the width of the stripe re-
flection to a single pixel.

At this stage, the experimental results show that the precision
of 3D points calculated by using the detected path are limited by
the resolution of the captured images. The unwanted aliasing ef-
fects are clearly visible when smooth planar surfaces are observed
(Fig. 6(a)).

To alleviate this problem we regenerated the paths in subpixel
accuracy using Nonlinear Least Squares Algorithm (NLSA). As pro-
posed in [23] the width profile of the reflected stripe can be con-
sidered as a Gaussian distribution. By fitting a Gaussian function
to the laser profile, the approximate peak value can be detected
with subpixel accuracy. The optimal paths found by NLSA signif-
icantly improve the accuracy of the reconstructed 3D data (e.g.
Fig. 6(b)). The details of NLSA implementation are given in Ap-
pendix A.

4.4. Obtaining 3D point cloud

Considering the assumed perspective camera model, coordinate
axes (Fig. 2) and the proposed scanner geometry, the triangula-
Fig. 6. (a) Reconstructed point cloud with pixel accuracy. (b) Reconstructed point
cloud with sub-pixel accuracy. Boxed regions of both figures are shown in detail in
the upper-right corner.

Fig. 7. Laser triangulation geometry for two independent line lasers.

tions can be depicted as Fig. 7. For simplicity, the 2D geometry
is shown in X Z plane since the extension to Y axis is straight-
forward. In this representation, subscript L represents “left” and
subscript R represents “right” respectively.

Light plane ΠL intersects with the objects in the surrounding
environment. A point pL is the intersection point of the plane ΠL

and line lL which means that pL solves Eqs. (1) and (2) simulta-
neously. A plane can be defined with one point and one normal
vector as in Eq. (1). Similarly, a line can be defined as in Eq. (2).

(ΠL): (p − DL) · nL = 0, (1)

(lL): p = kv L . (2)

Substituting Eq. (2) in Eq. (1) to find k and substituting this expres-
sion back in Eq. (2) the vector pL pointing to the object surface can
be found as:
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pL =
(

DL · nL

v L · nL

)
v L . (3)

In the above derivation, since the distance d (see Fig. 7) is
a design parameter by construction, DL is approximately known.
Initially, nL can be considered as the unit vector pointing +X di-
rection. Moreover, v L can be written explicitly as Eq. (4) with
(xim, yim) pixel coordinates of the point pL on the image plane π ,
(ox,oy) the pixel coordinates of the image center, (sx, sy) the ef-
fective size of the pixel in the horizontal and vertical directions
and f the focal length of the camera [19]. By writing v L explic-
itly, the intrinsic parameters of the camera are embedded into the
solution (Eq. (5)).

v L =
[ −(xim − ox)sx

−(yim − oy)sy

f

]
, (4)

pL =
⎡
⎣ −(DL ·nL

v L ·nL
)(xim − ox)sx

−( DL ·nL
v L ·nL

)(yim − oy)sy

( DL ·nL
v L ·nL

) f

⎤
⎦ . (5)

Similarly pR can found as in Eq. (6):

pR =
⎡
⎣ −( DR ·nR

v R ·nR
)(xim − ox)sx

−( DR ·nR
v R ·nR

)(yim − oy)sy

( DR ·nR
v R ·nR

) f

⎤
⎦ . (6)

Using Eqs. (5) and (6), and precomputed intrinsic camera pa-
rameters (i.e. ox , oy , sx , sy and f ) for projecting image points
corresponding to light stripes back to 3D space, point clouds can
be created as in Fig. 6.

At each step of the mechanical actuators, an offset (which is
angular for Scanners 1 and 3 and translational for Scanner-2) is
included in the corresponding terms.

5. Calibration by using coplanarities and orthogonalities

5.1. Geometrical constraints in the scenes

Previously, details of three scanner configurations were given.
They are designed for different scanning scenarios but they share
the same calibration problem involving the usage of second line
laser. The first scanner, Scanner-1, is designed to scan enclosed en-
vironments. A sample scene where a person is sitting in front of
a wall can be seen in Fig. 8(a). The most significant geometrical
constraint is the wall and the floor data where they represent or-
thogonal planes. Also it is known that when the best calibration is
achieved, corresponding data points from either of the lasers be-
come coplanar on these planes.

The second scanner, Scanner-2, is designed to scan near pla-
nar objects. A sample scene in which a Sphinx Mask is laid on
the floor can be seen in Fig. 8(b). In this case, there are no
apparent geometrical constraints like orthogonal planes in the
scene. Also for Scanner-3, if an arbitrary object (e.g. Frog fig-
urine in Fig. 8(c)) is scanned, finding an apparent geometrical
constraint is not possible as well. Hence for Scanners 2 and 3 an
L-shaped calibration object (see Fig. 9) is utilized to create nec-
essary geometrical constraints in the scene. Once this calibration
object is scanned, desired geometrical constraints are obtained.
An L-shaped object can also be used for Scanner-1 if two or-
thogonal planes are not available in the scanned angular inter-
val.

5.2. Plane detection in 3D point cloud data

Our solution to the laser calibration problem is to use known
orthogonalities and coplanarities in the scene. In [16], the idea of
Fig. 8. Scanned samples.

Fig. 9. L-shaped calibration figure.

Fig. 10. Parameterization of a plane in 3D.

using orthogonalities and coplanarities was also proposed. In this
work the planar features in the scene are found automatically.
First, scanning and preliminary 3D reconstruction with initial pa-
rameters are performed. Since the number of scanned points is
usually extremely high, a brute force method to find dominant
planes in 3D data takes an excessive amount of time with conven-
tional computers. Hence an efficient method is needed. In [24], the
parameterization of a plane is described as Eq. (7) where (ρ, θ,β)

are plane parameters and (x, y, z) triplet is a point on the plane
(see Fig. 10).

ρ = (
x cos(β) + y sin(β)

)
cos(θ) + z sin(θ). (7)

As proposed in [24], plane detection in a point cloud data
can be performed by using Hough Transform once the plane is
represented with parameters (i.e. (ρ, θ,β)). Conventionally, Hough
Transform is used to find lines or circles in 2D images. Plane find-
ing in 3D point cloud data is a higher order problem which re-
quires a higher dimensional search. In [25], plane detection meth-
ods using Hough Transform are surveyed. Among those methods,
Randomized Hough Transform (RHT) is a proper choice for our
problem. With a slight modification to the representation in [25],
pseudo code of the RHT method we used in our approach can be
seen in Appendix B.

When the RHT plane detection algorithm is applied on the
point cloud generated using left laser (Fig. 4(b)), the wall data and
floor data can be decomposed as Figs. 11(a) and 11(b) respectively.
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Fig. 11. (a) Wall data (b) Floor data, detected from point cloud in Fig. 6(b).

Once the (presumably) coplanar points representing a plane are
found for both left and right stripes, the corresponding analytical
equation can be found by Linear Least Squares Algorithm (LLSA).
LLSA based 3D plane fitting allows us to test validity of system
parameters so that planes acquired using two stripes are aligned
correctly.

To solve 3D plane fitting problem we considered the plane de-
fined in Eq. (8).

Ax + B y + C = z. (8)

In order to find (A, B, C) triplets from observations of (x, y, z)
triplets, we focus on the minimization of ‖Hu − b‖2. Here u =
[A B C]T , H and b can be constructed from observations. This
problem can be solved as in Eq. (9) [26].

H T Hû = H T b. (9)

We can reorganize Eq. (9) as Eq. (10):

⎡
⎣

∑m
i=0 x2

i

∑m
i=0 xi yi

∑m
i=0 xi∑m

i=0 xi yi
∑m

i=0 y2
i

∑m
i=0 yi∑m

i=0 xi
∑m

i=0 yi
∑m

i=0 1

⎤
⎦

[ A
B
C

]
=

⎡
⎣

∑m
i=0 xi zi∑m
i=0 yi zi∑m

i=0 zi

⎤
⎦ . (10)

The solution to Eq. (10) gives us the estimated plane param-
eters (A, B, C). In our implementation the pixel locations corre-
sponding to dominant planes that are used for calibration are
recorded for each image. These image pixels are used in the op-
timization steps. This makes it possible to complete calibration
without imposing extensive memory and computation time re-
quirements.

5.3. Nelder–Mead Algorithm

In order to estimate the parameters that represent the projec-
tion planes of laser stripes (e.g. ΠL and ΠR in Fig. 7), an opti-
mization procedure is required. In our study the problem is de-
fined as a multidimensional minimization problem. Nelder–Mead
Algorithm (NMA) [27], which is a downhill simplex method, is
an appropriate approach to solve such problems. The problem is
solved by calculating objective function f (•) at simplex vertices
and performing some procedural geometrical operations to up-
date these vertices. At each step f (•) is calculated for new vertice
values. Each vertice corresponds to parameters representing a fea-
sible solution. The details of NMA implementation can be found in
Appendix C.

The reconstruction problem for Scanner-1 and 2 is very simi-
lar. The only difference is that: in Scanner-1 the movement of the
scanner is a rotation around Y whereas it is a translation along X
Fig. 12. Axis representations of Scanner-3.

in Scanner-2. The laser projection planes can be identified with Di ,
ni (where i = L, R). Surface normals ni can be represented by two
angles (i.e. azimuth and zenith angles in spherical coordinates) θi
and βi .

The configuration for Scanner-3 (see Fig. 12) is slightly differ-
ent since the movement is with respect to a turntable. In addi-
tion to the configuration parameters given for Scanners 1 and 2,
the rotation around turntable’s Y T axis should also be embed-
ded in the solution. Coordinates of the turntable’s rotation cen-
ter (i.e. O T ) should be expressed with respect to cameras optical
center (i.e. O ). The position of the turntable is included in the
optimization procedure with three parameters Dx , D y and Dz .
Initial distance values can be approximately found by measur-
ing the distances manually. In order to correctly identify the ro-
tation around turntable axis, the necessary rotation angles Θx ,
Θy and Θz , which aligns corresponding coordinate axes, are also
included in the optimization procedure. The laser emitters can
be positioned such that the stripes intersect behind the rotation
center. This offset distance is dependent on the size and shape
of the object that needs to be scanned. It is possible to scan
non-convex objects if a significant offset which should be lower
than approximate radius of the object is used (e.g. Fig. 13). In
Fig. 13(a) the laser stripes are intersected at the rotation axis
of the turntable. Since some part of the non-convex sample is
located beyond the intersection point, an ambiguity is observed
while generating point clouds by using Eqs. (5) and (6). This am-
biguity is resolved by intersecting lasers beyond the rotation axis
(Fig. 13(b)).

5.4. Objective function

In order to make 3D measurements from left and right stripes
align correctly, the parameters that represent laser sources’ po-
sitions and orientations should be identified accurately. These
parameters are listed in Eq. (11). Here, S1, S2 and S3 are the
parameter sets used for Scanners 1, 2 and 3 respectively.

The geometrical constraints of the calibration problem can be
illustrated as in Fig. 14. The planar point clouds are named as
π

j
i where subscript i represents laser source (i.e. either left or

right) and superscript j represents the corresponding surface (i.e.
either a or b) of the scanned environment or the calibration pat-
tern. After optimizing the scanner parameters, πa

L and πa
R be-

come coplanar in Πa . Similarly πb
L and πb

R become coplanar
in Πb .

To measure the coplanarity we utilized linear-least squares
method to find the best fitting plane equations for Π js which
represent the merged plane pairs. The fitting error (i.e. Err(Π j))
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Fig. 13. Scanning non-convex objects using Scanner-3.
Fig. 14. Representation of the geometry used to define objective function in NMA.

serves as a measure that quantifies coplanarity of two planes
(i.e. π

j
L and π

j
R ). The orthogonality constraint is included in the

objective function as the dot product of normals na , nb (of surfaces
Πa and Πb).

Scanning results are significantly improved after NMA iterations
on the objective function (Figs. 18, 19, 20, 21).

S1 = {θL, βL, θR , βR , D L, D R},
S2 = {θL, βL, θR , βR , D L, D R},
S3 = {θL, βL, θR , βR , D L, D R , Dx, D y, Dz,Θx,Θy,Θz}. (11)

f (Si) = MAX
{

Err
(
Πa),Err

(
Πb)} ∗ (

1 + (
na · nb)),

i = 1,2,3. (12)

6. Results and conclusion

In this study three different laser scanners are studied. Each
scanner has two line lasers installed at each side of a standard CCD
camera (see Fig. 1). Using two laser stripes brings up the problem
of aligning two scanning results gathered from each one of the
laser sources. To correctly align scanning results, both laser light
planes should be correctly identified with respect to a reference
coordinate frame which is the camera coordinate system described
in Fig. 2.

In the previous sections, the problem is defined and geomet-
rically parameterized. It is shown that parameters can be opti-
mized by a minimization procedure. NMA is chosen for this mul-
tidimensional minimization problem. Sample optimization results
can be seen in Table 1. For calibration of Scanner-1, wall and
floor data from the room scan is used. For Scanners 2 and 3,
scanning result of the calibration object (see Fig. 9) is used. An-
gles are given in degrees and distances are given in millimeters
(mm).
Table 1
Sample optimization results for parameters. Angle values are given in degrees, dis-
tances are given in millimeters (mm).

Parameter \ Scanner Scanner-1 Scanner-2 Scanner-3

θL initial 0.000 36.000 15.000
final 0.211 37.130 14.456

βL initial 0.000 0.000 0.000
final −0.003 0.332 −4.012

θR initial 180.000 145.000 160.000
final 179.787 143.633 160.898

βR initial 0.000 0.000 0.0
final 0.841 −0.295 −5.531

D L initial 500.000 250.000 137.700
final 502.950 251.913 134.489

D R initial −500.000 −250.000 −137.700
final −502.574 −247.474 −138.033

Dx initial N/A N/A 0.000
final 19.692

D y initial N/A N/A −92.100
final −96.645

Dz initial N/A N/A 448.400
final 439.066

Θx initial N/A N/A 22.600
final 17.553

Θy initial N/A N/A 0.000
final −24.126

Θz initial N/A N/A 0.000
final −1.883

f (•) initial 22.166 3.332 1.241
final 0.074 0.482 0.147

To visualize the performance of the optimization procedure, pa-
rameter variations during NMA iterations are given in Fig. 15. Since
the parameters are in different metrics they are normalized with
respect to the maximum value achieved during iterations.

Variations in objective function value during NMA iterations are
given in Fig. 16. The algorithm is stopped at a point where the
parameter and objective function variations are negligibly small.

Reconstructed scanning results can be seen in Figs. 18–20.
To reconstruct surfaces a distance function is calculated over
a computation grid [28,29] and triangulated by using Marching
Cubes Algorithm (MCA) [30].

The total computation time on a set of 250 1280 × 1024
images using a Core i5 2.53 GHz based computer is typically
less than 5 minutes. The most significant computationally inten-



238 Ş. Ozan, Ş. Gümüştekin / Digital Signal Processing 24 (2014) 231–243
Fig. 15. Parameter changes during NMA iterations.
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Fig. 16. Value of objective function (see Eq. (12)) during NMA iterations.

Fig. 17. Images of the actual scanners developed for this study.

Fig. 18. Reconstruction results for “person sitting in front of a wall” scan by Scanner-1.
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Fig. 19. Reconstruction results for “Sphinx Mask” scan by Scanner-2.

Table 2
Mean and standard deviations of radius measurements for a sphere (shown in Fig. 21) using left and right lasers before and
after optimization procedure.

(Before optim./after optim.) Left laser Right laser Left and right laser

Mean 99.528/75.399 122.610/74.989 112.220/75.172
Standard deviation 6.257/0.508 4.920/0.538 12.755/0.562
Number of data points 90000/90000 90000/90000 90000/90000
sive operations are done on RHT and NMA. Detection of four
dominant planes using RHT for Scanner-3 setup is completed
in 62 seconds. NMA (whose performance is highly dependent
on initial parameter assignments) for the same setup is com-
pleted in 192 seconds. Scanner-1 and Scanner-2 computations
are completed in a shorter period due to less number of pa-
rameters, even though twice as many (500) image frames are
used.

A final test is done to test the validity of the procedure using
an object with known geometrical properties. In order to gen-
erate worst case scenario, Scanner-3 is used in this experiment,
since it involves additional parameters compared to other scan-
ners. A sphere with a diameter of 150 mm was chosen as the
test object. The point clouds are shown before and after opti-
mization in parts (a) and (b) of Fig. 21. Parts (c) and (d) of the
same figure show the histograms of distances from detected sphere
center to 3D points. Same number of data points are randomly
selected for before and after optimization cases. Numerical re-
sults from this experiment are given in Table 2. It can be seen
that, refinement in the estimated parameter set makes it pos-
sible to generate 3D points preserving the shape of the object.
In this experiment the size of the object is correctly identified,
but it should be noted that the distance measurements are de-
pendent mostly on the parameters D L and D R which are the
distances from camera to laser sources (see Fig. 7). The align-
ment of point sets does not guarantee convergence to physically
correct values. To determine the correct scales of D L and D R , pre-
cise physical measurements of these terms can be used as fixed
values or a calibration object with known geometry can be uti-
lized.

In this paper, it is shown that the usage of double laser stripes
effectively alleviates the occlusion problems. The problems as-
sociated with multiple stripes are solved using an optimization
procedure which calibrates system parameters. Calibration perfor-
mance is illustrated for three different types of scanning systems
Fig. 20. Reconstruction results for “Frog figurine” scan by Scanner-3.

(Fig. 17) designed for indoor environments, near planar objects and
small 3D objects. The calibration object needed for our procedure
is a simple object that has two perpendicular planar surfaces. It is
also shown that in some cases where such surfaces exist in the
scene, calibration can be done without using an external calibra-
tion object.
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Appendix A. NLSA for Gaussian fit

f (x;a) = a1e−(x−a2)/2a2
3 . (A.1)

To obtain a subpixel accuracy Gaussian function can be fitted
to the laser profile. In Eq. (A.1), a1 is the amplitude of the Gaus-
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Fig. 21. A 150 mm diameter sphere scanned with Scanner-3. (a) Point cloud before optimization. (b) Point cloud after optimization. (c) Histogram of distances from detected
center to 3D points before optimization. (d) Histogram of distances from detected center to 3D points after optimization.
sian which in our problem corresponds to the pixel intensity. a2 is
the position of the peak point, which is the value we aimed to
find and lastly a3 corresponds to the standard deviation which
identifies the width of the bell shape of the Gaussian. Nonlinear
least-squares algorithm [31] is implemented as the following to
solve this problem:

minimize

(
m∑

i=1

(
ri(xi;a)

)2

)
, (A.2)

where m is the number of measurements and ri can be defined
as the difference between ith measured value yi and the fitted
function value f (xi,y). Hence ri can be written as:

ri(xi,a) = yi − f (xi;a1,a2, . . . ,an). (A.3)

In our problem, the number of variables n is 3 (considering
Eq. (A.1)). r can be considered a small change in the function
f (x;a). Hence the linearized estimate for the small changes in the
function can also be written as (A.4).

ri(xi,a) =
n∑

j=1

∂ f

∂a j
da j

∣∣∣∣∣ . (A.4)

xi;a
After constructing an m × n Jacobian matrix J from the terms:

J i j = ∂ f

∂a j

∣∣∣∣
xi;a

(A.5)

the displacement vector da can be found as:

da = (
JT J

)−1
(Jr). (A.6)

In our problem, m = 9, i.e. the Gaussian fit is performed by us-
ing nine neighboring pixels in the same row, where the mid pixel
is the pixel found by dynamic programming. The original pixel
intensity value at the coordinate where we find a path pixel in
the binary path image is taken as initial a1, the column position
is taken as initial a2 and initial a3 is taken as 2.0 (in Eq. (A.1)).
yi values are taken as corresponding nine neighboring pixels in
the original image. da value is used to find the a j estimates in an
iterative manner. At each iteration small da j variations are added
to each a j and by updating r and J at each iteration step optimal
values are achieved after few iterations. Pixel accurate and sub-
pixel accurate reconstruction results can be seen in Figs. 6(a) and
6(b) respectively.
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Fig. C.1. Actions in Nelder–Mead Algorithm.

Appendix B. Randomized Hough Transform (RHT)

Randomized Hough Transform (RHT)
1: while more points are needed from point cloud P do
2: Randomly pick three points p1, p2, p3 from P
3: if p1, p2 are p3 satisfy the distance criterion then
4: Calculate plane (ρ, θ,β) spanned by p1, p2, p3
5: Increment corresponding cell A(ρ, θ,β) in the

accumulator space
6: else
7: continue
8: end if
9: end while

10: Return target triplet (ρt , θt , βt) from MAX(A(ρ, θ,β))

11: for all points pi in point cloud P do
12: if f (ρt , θt , βt , pi) is smaller than T then
13: pi is assigned as a plane point
14: else
15: pi is assigned as a non-plane point
16: end if
17: end for

In the above code, P represents the corresponding point cloud
in which a plane is searched for. The key idea of RHT is to ran-
domly pick point triplets (i.e. (p1, p2, p3)) and parameterize the
plane which is defined by the three chosen points. The distribution
of plane parameter triplets (i.e. (ρ, θ,β), see Fig. 10) concentrates
around a point (i.e. (ρt , θt , βt)) in parameter space and this point
represents a plane equation. Once the parameters are found, the
last step is to find the points which are close enough to the plane
defined in Eq. (7).

Appendix C. Nelder–Mead Algorithm (NMA)

The NMA can be described as follows:

Nelder–Mead Algorithm
STEP 1: Initialize:

Order vertices according to the objective function
values (Fig. C.1(a)).
f (x1) � f (x2) � · · · � f (xN+1)

STEP 2: Calculate COG:
xo which is the center of gravity of (x1,x2, . . . ,xN)

excluding xN+1
STEP 3: Reflection:

Compute reflected point xR = xo + α(xo − xN+1)

(Fig. C.1(b))
If f (x1) � f (xR) � f (xN)

Then replace xN+1 with xR
STEP 4: Expansion:

If xR < x1
Then compute expanded point xE = xo + γ (xo − xN+1)

(Fig. C.1(c))
If xE < xR
Then replace xN+1 with xE and goto STEP 1
Else replace xN+1 with xR and goto STEP 1

STEP 5: Contraction:
Since xR � xN
Compute contracted point xC = xN+1 + ρ(xo − xN+1)

(Fig. C.1(d))
If xC < xN+1
Then replace xN+1 with xC and goto STEP 1
Else goto STEP 6

STEP 6: Multiple Contraction:
Compute contracted points xi = x1 + σ(xi − x1)

For i ∈ {2, . . . , N + 1} (Fig. C.1(e))
Else goto STEP 1

In the above algorithm, x represents optimization parameters
given as in Eq. (11) for each scanner.

References

[1] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms, Int. J. Comput. Vis. 47 (2002) 7–42.

[2] B.K.P. Horn, Robot Vision, MIT Electrical Engineering and Computer Science Se-
ries, MIT Press, 1986.

[3] R.J. Woodham, Shape recovery, in: L.B. Wolff, S.A. Shafer, G.E. Healey (Eds.),
Shape Recovery, Jones and Bartlett Publishers, Inc., USA, 1992, pp. 115–120,
(Ch. Photometric method for determining surface orientation from multiple im-
ages).

[4] J. Ens, P. Lawrence, An investigation of methods for determining depth from
focus, IEEE Trans. Pattern Anal. Mach. Intell. 15 (2) (1993) 97–108.

[5] M. Subbarao, G. Surya, Depth from defocus: A spatial domain approach, Int. J.
Comput. Vis. 13 (1994) 271–294.

[6] M. Watanabe, S.K. Nayar, Rational filters for passive depth from defocus, Int. J.
Comput. Vis. 27 (1998) 203–225.

[7] G.A. Atkinson, E. Hancock, Shape estimation using polarization and shading
from two views, IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007) 2001–2017.

[8] S. Rahmann, N. Canterakis, Reconstruction of specular surfaces using polariza-
tion imaging, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 1
(2001) 149–155.

[9] J. Salvi, S. Fernandez, T. Pribanic, X. Llado, A state of the art in structured light
patterns for surface profilometry, Pattern Recognit. 43 (8) (2010) 2666–2680.

[10] J. Salvi, J. Pagès, J. Batlle, Pattern codification strategies in structured light sys-
tems, Pattern Recognit. 37 (4) (2004) 827–849.

[11] J. Pages, J. Salvi, R. Garcia, C. Matabosch, Overview of coded light projection
techniques for automatic 3D profiling, IEEE Int. Conf. Robot. Autom. 1 (2003)
133–138.

http://refhub.elsevier.com/S1051-2004(13)00182-6/bib5363686172737465696Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib5363686172737465696Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib42486F726Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib42486F726Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib576F6F6468616Ds1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib576F6F6468616Ds1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib576F6F6468616Ds1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib576F6F6468616Ds1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib456E73s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib456E73s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib537562626172616Fs1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib537562626172616Fs1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib576174616E616265s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib576174616E616265s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib41746B696E736F6E32s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib41746B696E736F6E32s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib5261686D616E6Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib5261686D616E6Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib5261686D616E6Es1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C7669s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C7669s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C766932s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C766932s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C766933s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C766933s1
http://refhub.elsevier.com/S1051-2004(13)00182-6/bib53616C766933s1
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