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Abstract

Complex cepstrum is known in the literature for linearly separating causal and anticausal components. Relying on advances achieved
by the Zeros of the Z-Transform (ZZT) technique, we here investigate the possibility of using complex cepstrum for glottal flow estima-
tion on a large-scale database. Via a systematic study of the windowing effects on the deconvolution quality, we show that the complex
cepstrum causal-anticausal decomposition can be effectively used for glottal flow estimation when specific windowing criteria are met. It
is also shown that this complex cepstral decomposition gives similar glottal estimates as obtained with the ZZT method. However, as
complex cepstrum uses FFT operations instead of requiring the factoring of high-degree polynomials, the method benefits from a much
higher speed. Finally in our tests on a large corpus of real expressive speech, we show that the proposed method has the potential to be

used for voice quality analysis.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Glottal source estimation aims at isolating the glottal
flow contribution directly from the speech waveform. For
this, most of the methods proposed in the literature are
based on an inverse filtering process. These methods first
estimate a parametric model of the vocal tract, and then
obtain the glottal flow by removing the vocal tract contri-
bution via inverse filtering. The methods in this category
differ by the way the vocal tract is estimated. In some
approaches (Veeneman and BeMent, 1985; Alku and Vilk-
man, 1994), this estimation is computed during the glottal
closed phase, as the effects of the subglottal cavities are
minimized during this period, providing a better way for
estimating the vocal tract transfer function. Some other
methods (such as Alku et al., 1992) are based on iterative
and/or adaptive procedures in order to improve the quality
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of the glottal flow estimation. Note that a detailed overview
of the glottal source estimation methods can be found in
various resources such as Alku et al. (2009) or Walker
and Murphy (2007).

In this paper we consider a non-parametric decomposi-
tion of the speech signal based on the mixed-phase model
(Bozkurt and Dutoit, 2003; Doval et al., 2003). According
to this model, speech contains a maximum-phase (i.e anti-
causal) component corresponding to the glottal open
phase. In a previous work (Bozkurt et al., 2005), we pro-
posed an algorithm based on the Zeros of the Z-Transform
(ZTT) which has the ability to achieve such a deconvolu-
tion. However, the ZZT method suffers from high compu-
tational load due to the necessity of factorizing large degree
polynomials. It has also been discussed in previous studies
that the complex cepstrum had the potential to be used for
excitation analysis (Oppenheim and Schafer, 1989; Quati-
eri, 2002) but no technique is yet available for reliable
glottal flow estimation. This paper more specifically dis-
cusses the use of the complex cepstrum for performing
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the estimation of the glottal open phase from the speech
signal, in the light of our previous work on ZZT-based
source separation. Almost identical results are obtained
with limited computational load, and it is shown that the
algorithm is stable enough to enable the analysis of a large
database. This manuscript extends our first experiments on
such a cepstral decomposition of speech (Drugman et al.,
2009) by providing a more comprehensive theoretical
framework, by performing extensive tests on a large real
speech corpus and by giving access to a freely available
Matlab toolbox.

The goal of this paper is two-fold. First we explain in
which conditions complex cepstrum can be used for glottal
source estimation. The link with the ZZT-based technique
is emphasized and both methods are shown to be two
means of achieving the same operation: the causal-anti-
causal decomposition. However it is shown that the com-
plex cepstrum performs it in a much faster way. Secondly
the effects of windowing are studied in a systematic frame-
work. This leads to a set of constraints on the window so
that the resulting windowed speech segment exhibits prop-
erties described by the mixed-phase model of speech. It
should be emphasized that no method is here proposed
for estimating the return phase component of the glottal
flow signal. As the glottal return phase has a causal charac-
ter (Doval et al., 2003), its contribution is mixed in the also
causal vocal tract filter contribution of the speech signal.

The paper is structured as follows. Section 2 presents the
theoretical framework for the causal-anticausal decompo-
sition of voiced speech signals. Two algorithms achieving
this deconvolution, namely the Zeros of the Z-Transform
(ZZT) and the Complex Cepstrum (CC) based techniques,
are described in Section 3. The influence of windowing on
the causal-anticausal decomposition is investigated in Sec-
tion 4 by a systematic study on synthetic signals. Relying
on the conclusions of this study, it is shown in Section 5
that the complex cepstrum can be efficiently used for glottal
source estimation on real speech. Among others we demon-
strate the potential of this method for voice quality analysis
on an expressive speech corpus. Finally Section 6 concludes
and summarizes the contributions of the paper.

2. Causal-anticausal decomposition of voiced speech
2.1. Mixed-phase model of voiced speech

It is generally accepted that voiced speech results from
the excitation of a linear time-invariant system with
impulse response /i(n), by a periodic pulse train p(n) (Quati-
eri, 2002):

x(n) = p(n)¥ch(n). (1)

According to the mechanism of voice production, speech is
considered as the result of a glottal flow signal filtered by
the vocal tract cavities and radiated by the lips. The system
transfer function H(z) then consists of the three following
contributions:

H(z) = A4-G()V (2)R(2), 2)

where A is the source gain, G(z) the glottal flow over a sin-
gle cycle, V(z) the vocal tract transmittance and R(z) the
radiation load. The resonant vocal tract contribution is
generally represented for “pure” vowels by a set of mini-
mum-phase poles (|vpx| <1), while modeling nasalized
sounds requires to also consider minimum-phase (i.e cau-
sal) zeros (Jvy x| <1). V(z) can then be written as the ra-
tional form:

_ Hﬁl(l —vz")
Hilzl(l — vz ")

During the production of voiced sounds, the airflow
evicted by the lungs arises in the trachea and causes a qua-
si-periodic vibration of the vocal folds (Quatieri, 2002).
These latter are then subject to quasi-periodic opening/clo-
sure cycles. During the open phase, vocal folds are progres-
sively displaced from their initial state because of the
increasing subglottal pressure (Childers, 1999). When the
elastic displacement limit is reached, they suddenly return
to this position during the so-called return phase. Fig. 1 dis-
plays one cycle of a typical waveform of the glottal flow
derivative according to the Liljencrants—Fant (LF) model
(Fant et al., 1985). The limits of these two phases are indi-
cated on the plot, as well as the particular event separating
them, called Glottal Closure Instant (GCI).

It has been shown in (Gardner and Rao, 1997; Doval et
al., 2003) that the glottal open phase can be modeled by a
pair of maximum-phase (i.e anticausal) poles (|g,| > 1) pro-
ducing the so-called glottal formant, while the return phase
can be assumed to be a first order causal filter response
(lg1] <1) resulting in a spectral tilt:

1
(=g (g (1 —gz )’
As for the lip radiation, its action is generally assumed as a
differential operator:
R(z)=1—rz" (5)

with r close to 1. For this reason, it is generally prefered to
consider G(z)R(z) in combination, and consequently to
study the glottal flow derivative or differentiated glottal flow
instead of the glottal flow itself.
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Fig. 1. One cycle of a typical waveform of the glottal flow derivative,
following the Liljencrants—Fant (LF) model. The different phases of the
glottal cycle, as well as the Glottal Closure Instant (GCI) are also
indicated.
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Gathering the previous equations, the system z-trans-
form H(z) can be expressed as a rational fraction with gen-
eral form (Oppenheim and Schafer, 1989:

y Hiﬁl(l —az") ’
[ (1= bz DI (1= ez

where «; and b, respectively denote the zeros and poles in-
side the unit circle (|a,| and |b| < 1), while ¢, are the poles
outside the unit circle (|ck| > 1). The basic idea behind
using causal-anticausal decomposition for glottal flow esti-
mation is the following: since ¢, are only related to the glot-
tal flow, isolating the maximum-phase (i.e anticausal)
component of voiced speech should then give an estimation
of the glottal open phase. Besides, if the glottal return phase
can be considered as abrupt and if the glottal closure is
complete, the anticausal contribution of speech corre-
sponds to the glottal flow. If this is not the case (Deng
et al., 20006), these latter components are causal (given their
damped nature) and the anticausal contribution of voiced
speech still gives an estimation of the glottal open phase.
Fig. 2 illustrates the mixed-phase model on a single
frame of synthetic vowel. In each row the glottal flow
and vocal tract contributions, as well as the resulting
speech signal, are shown in a different representation space.
It should be emphasized here that the all-zero representa-
tion (later refered to as the Zeros of Z-Transform (ZZT)
representation, and shown in the last column) is obtained

H(z) = (6)

857

by a root finding operation (i.e. a finite(n)-length signal
frame is represented with only zeros in the z-domain).
There exists n — 1 zeros (of the z-transform) for a signal
frame with n samples. However the zero in the third row
comes from the ARMA model and hence should not be
confused with the ZZT. The first row shows a typical glot-
tal flow derivative signal. From the ZZT representation
(last column), it can be noticed that some zeros lie outside
the unit circle while others are located inside it. The outside
zeros correspond to the maximum-phase glottal opening,
while the others come from the minimum-phase glottal clo-
sure (Bozkurt et al., 2005). The vocal tract response is dis-
played in the second row. All its zeros are inside the unit
circle due to its damped exponential character. Finally
the last row is related to the resulting voiced speech. Inter-
estingly its set of zeros is simply the union of the zeros of
the two previous components. This is due to the fact that
the convolution operation in the time domain corresponds
to the multiplication of the z-transform polynomials in the
z-domain. For a detailed study of ZZT representation and
the mixed-phase speech model, the reader is refered to Boz-
kurt et al. (2005).

2.2. Short-time analysis of voiced speech

For real speech data, Eq. (1) is only valid for a short-
time signal (Tribolet et al., 1977; Verhelst and Steenhaut,
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05 30
2 20 11 i 11
,,'..-_nw-""‘" """—m-....___.m
o 2. 0 E 10 1 o 1 .
e 3 ° E s
] = T oo 3 09 3 09
S22 = 2 3 3
£ E = =
5 g Eoos & 10 08 08
-] ) srene,,. ceenstett
© -20 07 % 07 Steay geett
-1 -30 0.6 06
0 20 40 60 80 100 0 2000 4000 6000 8000 -5000 0 5000 -5000 0 5000
Time (sample) Frequency (Hz) Frequency (Hz) Frequency (Hz)
u u
3 40
2 30 11 11
g g [ E 2 1 1
|._'Eg 21 W 8 TP ML g ]
- = 3 2 09« x * 3 09
8 2 = 0 2 0 H e
S é’ 5 ® . = g3 " . =g
= x x
. 20 07 07
-2 -30
0 50 100 150 200 0 2000 4000 6000 8000 -5000 0 5000 -5000 0 5000
Time (sample) Frequency (Hz) Frequency (Hz) Frequency (Hz)
5 50
" 11 1.1
w E s < T T
W o ¢ = 1 I} L} S P
gwn 3 o E] Koy g ® MR ox L ou ¥ E]
E o o
o £ & LR y A E 4
& = - * x I Lo R
10 i i 5 " ) 50 i b 7 06 N . . 06 . . i
50 100 150 200 250 0 2000 4000 6000 8000 -5000 0 5000 -5000 0 5000
Time (sample) Frequency (Hz) Frequency (Hz) Frequency (Hz)

Fig. 2. Illustration of the mixed-phase model. The three rows respectively correspond to the glottal flow derivative, the vocal tract response, and the
resulting voiced speech. These three signals are all represented in four domains (from the left to the right): waveform, amplitude spectrum, pole-zero
modeling, and all-zero (or ZZT) representation. Each column shows how voiced speech is obtained, in each of the four domains.
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1986). Most practical applications therefore require pro-
cessing of windowed (i.e short-time) speech segments:

s(n) = w(n)x(n), (7)
= w(n)(4 - p(n)veg(n)vco(n)ber(n)) (8)

and the goal of the decomposition is to extract the glottal
source component g(n) from s(n). As it will be discussed
throughout this article, windowing is of crucial importance
in order to achieve a correct deconvolution. Indeed, the z-
transform of s(n) can be written as:

S(z) = W(z)»X(2), 9)
= Zw(n)x(n)zfa (10)
=50 [ = Zeo) [ [ = Zues), (11)

where Zc- and Z, - are respectively a set of M; causal
(I Zc.xl <1) and M, anticausal (|Z4c | > 1) zeros (with
M,+ M;=N—1). As it will be underlined in Section
3.1, Eq. (11) corresponds to the ZZT representation.

From these latter expressions, two important consider-
ations have now to be taken into account:

e Since s(n) is finite length, S(z) is a polynomial in z (see
Eq. (11)). This means that the poles of H(z) are now
embedded under an all-zero form. Indeed let us consider
a single real pole a. The z-transform of the related
impulse response y(n) limited to N points is (Oppenheim
et al., 1983):

,1)N

= 1—(az
Y(z) = Za”z e

2 Ep—— (12)

which is an all-zero form, since the root of the denominator

is also a root of the numerator (and the pole is conse-
quently cancelled).

e It can be seen from Egs. (9) and (10) that the window
w(n) may have a dramatic influence on S(z) (Verhelst
and Steenhaut, 1986; Quatieri, 2002). As windowing in
the time domain results in a convolution of the window
spectrum with the speech spectrum, the resulting change
in the ZZT is a highly complex issue to study (Bozkurt
et al., 2007). Indeed the multiplication by the windowing
function (as in Eq. (10)) modifies the root distribution of
X(z) in a complex way that cannot be studied analyti-
cally. For this reason, the impact of the windowing
effects on the mixed-phase model is studied in this paper
in an empirical way, as it was done in (Verhelst and
Steenhaut, 1986; Quatieri (2002)) for the convolutional
model.

To emphasize the crucial role of windowing, Figs. 3 and
4 respectively display a case of correct and erroneous glot-
tal flow estimation via causal-anticausal decomposition on
a real speech segment. In these figures, the top-left panel (a)

contains the speech signal together with the applied win-
dow and the synchronized differenced ElectroGlottoGraph
dEGG (after compensation of the delay between the laryn-
gograph and the microphone). Peaks in the dEGG signal
are informative about the location of the Glottal Closure
Instant (GCI). The top-right panel (b) plots the roots of
the windowed signal (Z¢; and Z 4¢x) in polar coordinates.
The bottom panels (c) and (d) correspond to the time wave-
form and amplitude spectrum of the maximum-phase (i.e
anticausal) component which is expected to correspond
to the glottal flow open phase.

In Fig. 3, an appropriate window respecting the condi-
tions we will derive in Section 4 is used. This results in a
good separation between the zeros inside and outside the
unit circle (see Fig. 3(b)). The windowed signal then exhib-
its good mixed-phase properties and the resulting maxi-
mum and minimum-phase components corroborate the
model exposed in Section 2.1. On the contrary, a 25 ms
long Hanning window is employed in Fig. 4, as widely used
in speech processing. It can be seen that even when this
window is centered on a GCI, the resulting causal-anti-
causal decomposition is erroneous. Zeros on each side of
the unit circle are not well separated: the windowed signal
does not exhibit characteristics of the mixed-phase model.
This simple comparison highlights the dramatic influence
of windowing on the deconvolution. In Section 4, we dis-
cuss in detail the set of properties the window should con-
vey so as to yield a good decomposition.

3. Algorithms for causal-anticausal decomposition of voiced
speech

For a segment s(n) resulting from an appropriate win-
dowing of a voiced speech signal x(n), two algorithms are
compared for achieving causal-anticausal decomposition,
thereby leading to an estimate g(n) of the real glottal
source g(n). The first one relies on the Zeros of the Z-
Transform (ZZT, Bozkurt et al., 2005) and is summarized
in Section 3.1. The second technique is based on the Com-
plex Cepstrum (CC) and is described in Section 3.2. It is
important to note that both methods are functionally
equivalent to each other, in the sense that they take the
same input s(n) and should give the same output g(n). As
emphasized in Section 2.2, the quality of the decomposition
then only depends on the applied windowing, i.e whether
s(n) = w(n)x(n) exhibits expected mixed-phase properties
or not. It will then be shown that both methods lead to sim-
ilar results (see Section 5.2). However, on a practical point
of view, the use of the complex cepstrum is advantageous
since it will be shown that it is much faster than ZZT. Note
that we made a Matlab toolbox containing these two meth-
ods freely available in (http://tcts.fpms.ac.be/~drugman/).

3.1. Zeros of the Z-Transform-based decomposition

According to Eq. (11), S(z) is a polynomial in z with
zeros inside and outside the unit circle. The idea of the
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Fig. 3. Example of decomposition on a real speech segment using an appropriate window. (a): The speech signal (solid line) with the synchronized dEGG
(dotted line) and the applied window (dash-dotted line). (b): The zero distribution in polar coordinates. (c): Two cycles of the maximum-phase component
(corresponding to the glottal flow open phase). (d): Amplitude spectra of the minimum (dotted line) and maximum-phase (solid line) components of the
speech signal. It can be observed that the windowed signal respects the mixed-phase model since the zeros on each side of the unit circle are well separated.
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Fig. 4. Example of decomposition on a real speech segment using a 25 ms long Hanning window. (a): The speech signal (solid line) with the synchronized
dEGG (dotted line) and the applied window (dash-dotted line). (b): The zero distribution in polar coordinates. (c): Two cycles of the maximum-phase
component. (d): Amplitude spectra of the minimum (dotted line) and maximum-phase (solid line) components of the speech signal. The zeros on each side
of the unit circle are not well separated and the windowed signal does not respect the mixed-phase model. The resulting deconvolved components are

irrelevant (while their convolution still gives the input speech signal).

ZZ7ZT-based decomposition is to isolate the roots Z - and
to reconstruct from them the anticausal component. The
algorithm can then be summarized as follows (Bozkurt
et al., 2005):

1. Window the signal with guidelines provided in Section 4,
2. Compute the roots of the polynomial S(z),

3. Isolate the roots with a modulus greater than 1,

4. Compute G(z) from these roots.

Although very simple, this technique requires the factor-
ization of a polynomial whose order is generally high
(depending on the sampling rate and window length). Even
though current factoring algorithms are accurate, the time
complexity still remains high (Sitton et al., 2003).

In addition to Bozkurt et al. (2005) where the ZZT algo-
rithm is introduced, some recent studies (Sturmel et al.,
2007; D’Alessandro et al., 2008) have shown that ZZT out-

performs other well-known methods of glottal flow estima-
tion in clean recordings. Its main disadvantages are
reported as sensitivity to noise and high computational
load.

3.2. Complex cepstrum-based decomposition

Homomorphic systems have been developed in order to
separate non-linearly combined signals (Oppenheim and
Schafer, 1989). As a particular example, the case where
inputs are convolved is especially important in speech pro-
cessing. Separation can then be achieved by a linear homo-
morphic filtering in the complex cepstrum domain, which
interestingly presents the property to map time-domain
convolution into addition. In speech analysis, complex cep-
strum is usually employed to deconvolve the speech signal
into a periodic pulse train and the vocal system impulse
response (Quatieri, 2002; Verhelst and Steenhaut, 1986).
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It finds applications such as pitch detection (Wangrae
et al., 2005), vocoding (Quatieri, 1979), etc. Based on a pre-
vious study (Drugman et al., 2009), it is here detailed how
to use the complex cepstrum in order to estimate the glottal
flow by achieving the causal-anticausal decomposition
introduced in Section 2.2. To our knowledge, no complex
cepstrum-based glottal flow estimation method is available
in the literature (except this manuscript’s introductory ver-
sion (Drugman et al., 2009)). Hence it is one of the novel
contributions of this paper to introduce one and to test it
on a large real speech database.

The complex cepstrum (CC) §(n) of a discrete signal s(n)
is defined by the following equations (Oppenheim and
Schafer, 1989):

S(w) = i s(n)e " (13)
log[S(w)] = log(|S(w)|) +j£S(w), (14)
§(n) = % [ log[S(w)]e"do, (15)

where Eqgs. (13)-(15) are respectively the Discrete-Time
Fourier Transform (DTFT), the complex logarithm and
the inverse DTFT (IDTFT). One difficulty when comput-
ing the CC lies in the estimation of ZS(w), which requires
an efficient phase unwrapping algorithm. In this work, we
computed the FFT on a sufficiently large number of points
(typically 4096) such that the grid on the unit circle is suf-
ficiently fine to facilitate in this way the phase evaluation.

If S(z) is written as in Eq. (11), it can be easily shown
(Oppenheim and Schafer, 1989) that the corresponding
complex cepstrum can be expressed as:

Is(0)] for n =0,
%f Zicw 0
N A2 for n < 0,
sm)y=<iz1 " (16)
M; 7
>, =& forn>0.

k=1

This equation shows the close link between the ZZT and
the CC-based techniques. Relying on this equation, Stei-
glitz and Dickinson demonstrated the possibility of com-
puting the complex cepstrum and unwrapped phase by
factoring the z-transform (Steiglitz and Dickinson, 1977;
Steiglitz and Dickinson, 1982). The approach we propose
is just the inverse thought process in the sense that our goal
is precisely to use the complex cepstrum in order to avoid
any factorization. In this way we show that the complex
cepstrum can be used as an efficient means to estimate
the glottal flow, while circumventing the requirement of
factoring polynomials (as it is the case for the ZZT). Indeed
it will be shown in Section 4.2 that optimal windows have
their length proportional to the pitch period. The ZZT-
based technique then requires to compute the roots of gen-
erally high-order polynomials (depending on the sampling
rate and on the pitch). Although current polynomial fac-
toring algorithms are accurate, the computational load still
remains high, with a complexity order of O(n?) for the fast-

est algorithms (Sitton et al., 2003), where n denotes the
number of samples in the considered frame. On the other
hand, the CC-based method just relies on FFT and IFFT
operations which can be fast computed, and whose order
1S O(Ngprrog(Ngrr)), where Ngpr is fixed to 4096 in this
work for facilitating phase unwrapping, as mentioned
above. For this reason a change in the frame length has lit-
tle influence on the computation time for the CC-based
method. Table 1 compares both methods in terms of com-
putation time. The use of the complex cepstrum now offers
the possibility of integrating a causal-anticausal decompo-
sition module into a real-time application, which was pre-
viously almost impossible with the ZZT-based technique.

Regarding Eq. (16), it is obvious that causal-anticausal
decomposition can be performed using the complex cep-
strum, as follows (Drugman et al., 2009):

1. Window the signal with guidelines provided in Section 4,
2. Compute the complex cepstrum $(n) using Egs. (13)-
(15),
. Set §(n) to zero for n> 0,
4. Compute g(n) by applying the inverse operations of Egs.
(13)—(15) on the resulting complex cepstrum.

(98]

Fig. 5 illustrates the complex cepstrum-based decompo-
sition for the example shown in Fig. 3. A simple linear lif-
tering keeping only the negative (positive) indexes of the
complex cepstrum allows to isolate the maximum and min-
imum phase components of voiced speech. It should be

Table 1

Comparison of the relative computation time (for our
Matlab implementation with Fy = 16 kHz) required for
decomposing a two pitch period long speech frame.
Durations were normalized according to the time needed
by the complex cepstrum-based deconvolution for

Fy =180 Hz.
Pitch Z7ZT-based CC-based
decomposition decompostion
60 Hz 111.4 1.038
180 Hz 11.2 1
25
2t Maximum-phase €————> Minimum-phase
component component
1.5¢F
1 -
2
2 051
g 0
<
D5}
1t
156}
300 -1.‘;0 -1(]]0 -SIU 6 Sl(] 160 1%0 200

Quefrency (sample)

Fig. 5. The complex cepstrum §(n) of the windowed speech segment s(1)
presented in Fig. 3(a). The maximum- (minimum-) phase component can
be isolated by only considering the negative (positive) indexes of the
complex cepstrum.
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emphasized that windowing is very critical as it is the case
for the ZZT decomposition. The example in Fig. 4 (where a
25ms long Hanning window is used) would lead to an
unsuccessful decomposition. We think that this critical
dependence on the window function, length and location
was the main hindrance in developing a complex cep-
strum-based glottal flow estimation method, although the
potential is known earlier in the literature (Quatieri, 2002).

It is also worth noting that since the CC method is an
alternative means of achieving the mixed-phase decomposi-
tion, it suffers from the same noise sensitivity as the ZZT
does.

4. Experiments on synthetic speech

The goal of this section is to study, on synthetic speech
signals, the impact of the windowing effects on the causal-
anticausal decomposition. It is one of the main contribu-
tions of this study to provide a parametric analysis of the
windowing problem and provide guidelines for reliable
complex cepstrum-based glottal flow estimation. For this,
synthetic speech signals are generated for a wide range of
test conditions (Drugman et al., 2009). The idea is to cover
the diversity of configurations one could find in natural
speech by varying all parameters over their whole range.
Synthetic speech is produced according to the source-filter
model by passing a synthetic train of Liljencrants-Fant
(LF) glottal waves (Fant et al., 1985) through an auto-
regressive filter extracted by LPC analysis of real sustained
vowels uttered by a male speaker. As the mean pitch in
these utterances is about 100 Hz, it is reasonable to con-
sider that the fundamental frequency should not exceed
60 and 180 Hz in continuous speech. Experiments in this
section can then be seen as a proof of concept on synthetic
male speech. Table 2 summarizes all test conditions.

Decomposition quality is assessed through two objective
measures (Drugman et al., 2009):

e Spectral distortion: Many frequency-domain measures
for quantifying the distance between two speech frames
have been proposed in the speech coding literature (Nor-
din and Eriksson, 2001). A simple relevant measure
between the estimated g(n) and the real glottal pulse
g(n) is the spectral distortion (SD) defined as (Nordin
and Eriksson, 2001):
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Table 2
Table of synthesis parameter variation range.
Pitch 60 : 20 : 180 Hz
Open quotient 0.4:0.05:0.9
Asymmetry coefficient 0.6:0.05:0.9

Vowel

fal, @/, i/, Iy/

where G(w) and a(a)) denote the DTFT of the original tar-
get glottal pulse g(n) and of the estimate g(n). To give an
idea, it is argued in (Paliwal and Atal, 1993) that a differ-
ence of about 1 dB (with a sampling rate of 8 kHz) is rather
imperceptible.

e Glottal formant determination rate: The amplitude spec-
trum for a voiced source generally presents a resonance
called the glottal formant (Doval and D’Alessandro,
2006, see also Section 2.1). As this parameter is an essen-
tial feature of the glottal open phase, an error on its
determination after decomposition should be penalized.
For this, we define the glottal formant determination rate
as the proportion of frames for which the relative error
on the glottal formant frequency is lower than 10%.

This formal experimental protocol allows us to reliably
assess our technique and to test its sensivity to various fac-
tors influencing the decomposition, such as the window
location, function and length. Indeed, Tribolet et al.
already observed in 1977 that the window shape and onset
may lead to zeros whose topology can be detrimental for
accurate pulse estimation (Tribolet et al., 1977). The goal
of this empirical study on synthetic signals is precisely to
handle with these zeros close to the unit circle, such that
the applied window leads to a correct causal-anticausal
separation.

4.1. Influence of the window location

In (Quatieri, 2002) the need of aligning the window cen-
ter with the system response is highlighted. Analysis is then
performed on windows centered on GCls, as these particu-
lar events demarcate the boundary between the causal and
anticausal responses, and the linear phase contribution is
removed. Fig. 6 illustrates the sensitivity of the causal-anti-
causal decomposition to the window position. It can be
noticed that the performance rapidly degrades, especially
if the window is centered on the left of the GCI. It is then
recommended to apply a GCl-centered windowing. In a
concrete application, techniques like the DYPSA algorithm

20

Spectral Distorsion (dB)

0
-50 0 50

Shift to the GCI position (% of T0)

Fig. 6. Sensitivity of the causal-anticausal decomposition to a GCI
location error. The spectral distortion dramatically increases if a non GCI-
centered windowing is applied (particularly on the left of the GCI).
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(Naylor et al., 2007), or the method we proposed in (Drug-
man and Dutoit, 2009), have been shown to give a reliable
and accurate estimation of the GCI locations directly from
the speech signal. For cases for which GCI information is
not available or unreliable, the formalism of the mixed-
phase separation has been extended in (Drugman et al.,
2009) to a chirp analysis, allowing the deconvolution to
be achieved in an asynchronous way, but at the expense
of a slight performance degradation.

4.2. Influence of the window function and length

In Section 2.2, Figs. 3 and 4 showed an example of cor-
rect and erroneous decomposition respectively. The only
difference between these figures was the length and shape
of the applied windowing. To study this effect let us con-
sider a particular family of windows w(#n) of N points satis-
fying the form Oppenheim and Schafer (1989):

1 2 1 - 4
w(n):%—icos (Ninl)—k 2acos <N7in1>, (18)

where o is a parameter comprised between 0.7 and 1 (for «
below 0.7, the window includes negative values which
should be avoided). The widely used Hanning and Black-
man windows are particular cases of this family for o =1
and o = 0.84 respectively. Fig. 7 displays the evolution of
the decomposition quality when o and the window length
vary. It turns out that a good deconvolution can be
achieved as long as the window length is adapted to its
shape (or vice versa). For example, the optimal length is
about 1.5 T, for a Hanning window and 1.75 T, for a
Blackman window. A similar observation can be drawn
from Fig. 8 according to the spectral distortion criterion.
Note that we displayed the inverse spectral distortion 1/
SD instead of SD only for better viewing purposes. At this
point it is interesting to notice that these constraints on the
window aiming at respecting the mixed-phase model are
sensibly different from those imposed to respect the so-
called convolutional model (Verhelst and Steenhaut, 1986;
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Fig. 7. Evolution of the glottal formant determination rate according the
window length and shape. Note that the Hanning and Blackman windows
respectively correspond to o« =1 and o = 0.84.
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Fig. 8. Evolution of the inverse spectral distortion 1/SD according the
window length and shape. Note that the Hanning and Blackman windows
respectively correspond to o =1 and o = 0.84. The inverse SD is plotted
instead of the SD itself only for clarity purpose.

Quatieri, 2002). For this latter case, it was indeed recom-
mended to use windows such as Hanning or Hamming with
a duration of about 2-3 pitch periods. It can be seen from
Fig. 7 that this would lead to poor causal-anticausal
decomposition results. Finally note that it was proposed
in (Pedersen et al., 2009) to analytically derive the optimal
frame length for the causal-anticausal decomposition, by
satisfying an immiscibility criterion based on a Cauchy
bound.

5. Experiments on real speech

The goal of this section is to show that a reliable glottal
flow estimation is possible on real speech using the complex
cesptrum. The efficiency of this method will be confirmed in
Sections 5.1 and 5.2 by analyzing short segments of real
speech. Besides we demonstrate in Section 5.3 the potential
of using complex cepstrum for voice quality analysis on a
large expressive speech corpus.

For these experiments, speech signals sampled at 16 kHz
are considered. The pitch contours are extracted using the
Snack library (The Snack Sound Toolkit, xxxx) and the
glottal closure instants are located directly from the speech
waveforms using the algorithm we proposed in Drugman
and Dutoit (2009). Speech frames are then obtained by
applying a GCl-centered windowing. The window we use
satisfies Eq. (18) for « = 0.7 and is two pitch period-long
so as to respect the conditions derived in Section 4. Cau-
sal-anticausal decomposition is then achieved by the com-
plex cepstrum-based method.

5.1. Example of decomposition

Fig. 9 illustrates a concrete case of decomposition on a
voiced speech segment (diphone/am/) uttered by a female
speaker. It can be seen that even on a nasalized phoneme
the glottal source estimation seems to be correctly carried
out for most speech frames (i.e the obtained waveforms
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Fig. 9. Top panel: A segment of voiced speech (diphone/a/) uttered by a female speaker. Boitom panel: Its corresponding glottal source estimation
obtained using the complex cepstrum-based decomposition. It turns out that a reliable estimation can be achieved for most of the speech frames.

turn out to corroborate the model of the glottal pulse
described in Section 2.1). For some rare cases the causal—
anticausal decomposition is erroneous and the maximum-
phase component contains a high-frequency irrelevant
noise. Nevertheless the spectrum of this maximum-phase
contribution almost always presents a low-frequency reso-
nance due to the glottal formant.

5.2. Analysis of sustained vowels

In this experiment, we considered a sustained vowel /a/
with a flat pitch which was voluntarily produced with an
increasing pressed vocal effort. Here the aim is to show that
voice quality variation is reflected as expected on the glottal
flow estimates obtained using the causal-anticausal decom-
position. Fig. 10 plots the evolution of the glottal formant
frequency Fg and bandwidth Bw during the phonation
(Drugman et al., 2009). These features were estimated with
both ZZT and CC-based methods. It can be observed that,
as expected, these techniques lead to similar results. The
very slight differences may be due to the fact that, for the
complex cepstrum, Eq. (16) is realized on a finite number
n of points. Another possible explanation is the precision
problem in root computation for the ZZT-based technique.
In any case, it can be noticed that the increasing vocal
effort can be characterized by increasing values of Fg and
Bw.
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5.3. Analysis of an expressive speech corpus

The goal of this part is to show that the differences pres-
ent in the glottal source when a speaker produces various
voice qualities can be tracked using causal-anticausal
decomposition. For this, the De7 database is used. This
database was designed by Marc Schroeder as one of the
first attempts of creating diphone databases for expressive
speech synthesis (Schroeder and Grice, 2003). The database
contains three voice qualities (modal, soft and loud)
uttered by a German female speaker, with about 50 min-
utes of speech available for each voice quality.

For each voiced speech frame, the complex cepstrum-
based decomposition is performed. The resulting maxi-
mum-phase component is then downsampled at 8 kHz
and is assumed to give an estimation of the glottal flow
derivative for the considered frame. For each segment of
voiced speech, a signal similar to the one illustrated in
Fig. 9 is consequently obtained. For this latter example it
was observed that an erroneous decomposition might
appear for some frames, leading to an irrelevant high-fre-
quency noise in the estimated anticausal contribution (also
observed in Fig. 4). One first thing one could wonder is
how large is the proportion of such frames over the whole
database. As a criterion deciding whether a frame is consid-
ered as correctly decomposed or not, we inspect the spec-
tral center of gravity. The distribution of this feature is
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Fig. 10. Glottal formant characteristics estimated by both ZZT and CC-based techniques on a real sustained vowel with an increasing pressed effort
(Drugman et al., 2009). Left panel: Evolution of the glottal formant frequency. Right panel: Evolution of the glottal formant 3 dB bandwidth.
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displayed in Fig. 11 for the loud voice. A principal mode at
around 2 kHz clearly emerges and corresponds to the
majority of frames for which a correct decomposition is
carried out. A second minor mode at higher frequencies
is also observed. It is related to the frames where the cau-
sal-anticausal decomposition fails, leading to a maxi-
mum-phase signal containing an irrelevant high-frequency
noise (as explained above). It can be noticed from this his-
togram (and it was confirmed by a manual verification of
numerous frames) that fixing a threshold at around
2750 Hz makes a good distinction between frames that
are correctly and incorrectly decomposed. According to
this criterion, Table 3 summarizes for the whole database
the percentage of frames leading to a correct estimation
of the glottal flow.

For each frame correctly deconvolved, the glottal flow is
then characterized by the 3 following common features:

e the Normalized Amplitude Quotient (NAQ):NAQ is a
parameter characterizing the glottal closing phase (Alku
et al., 2002). It is defined as the ratio between the
maximum of the glottal flow and the minimum of its
derivative, and then normalized with respect of the fun-
damental frequency. Its robustness and efficiency to sep-
arate different types of phonation was shown in (Alku et
al., 2002). Note that a quasi-similar feature called basic
shape parameter was proposed by Fant in Fant (1995),
where it was qualified as “most effective single measure
for describing voice qualities”.
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Fig. 11. Distribution of the spectral center of gravity of the maximum-
phase component, computed for the whole dataset of loud samples. Fixing
a threshold around 2.7 kHz makes a good separation between correctly
and incorrectly decomposed frames.

Table 3
Proportion of frames leading to a correct causal—
anticausal decomposition for the three voice qualities.

Voice quality % of frames correctly

decomposed
Loud 87.22
Modal 84.41
Soft 83.69

e the H1 — H2 ratio: This parameter is defined as the ratio
between the amplitudes of the amplitude spectrum of the
glottal source at the fundamental frequency and at the
second harmonic (Klatt and Klatt, 1990; Titze and
Sundberg, 1992). It has been widely used as a measure
characterizing voice quality (Hanson, 1995; Fant,
1995; Alku et al., 2009).

e the Harmonic Richness Factor (HRF): This parameter
quantifies the amount of harmonics in the magnitude
spectrum of the glottal source. It is defined as the ratio
between the sum of the amplitudes of harmonics, and
the amplitude at the fundamental frequency (Childers,
1999). It was shown to be informative about the phona-
tion type in (Childers and Lee, 1991; Alku et al., 2009).

Fig. 12 shows the histograms of these 3 parameters for
the three voice qualities. Significant differences between
the distributions are observed. Among others it turns out
that the production of a louder (softer) voice results in
lower (higher) NAQ and H1 — H2 values, and of a higher
(lower) Harmonic Richness Factor (HRF). These conclu-
sions corroborate the results recently obtained on sustained
vowels by Alku in (Alku et al., 2009; Alku et al., 2002).
Another observation that can be drawn from the histogram
of H1 — H?2 is the presence of two modes for the modal and
loud voices. This may be explained by the fact that the esti-
mated glottal source sometimes comprises a ripple both in
the time and frequency domains (Plumpe et al., 1999).
Indeed consider Fig. 13 where two typical cycles of the
glottal source are presented for both the soft and loud
voice. Two conclusions can be drawn from it. First of all,
it is clearly seen that the glottal open phase response for
the soft voice is slower than for the loud voice. As it was
underlined in the experiment of Section 5.2, this confirms
the fact Fg/F, increases with the vocal effort. Secondly
the presence of a ripple in the loud glottal waveform is
highlighted. This has two possible origins: an incomplete
separation between Fg and the first formant F; (Bozkurt
et al., 2004), and/or a non-linear interaction between the
vocal tract and the glottis (Plumpe et al., 1999; Ana-
nthapadmanabha and Fant, 1982). This ripple affects the
low-frequency contents of the glottal source spectrum,
and may consequently perturb the estimation of the
H1 — H2 feature. This may therefore explain the second
mode in the H1 — H2 histogram for the modal and loud
voices (where ripple was observed).

It is also observed that histograms in Fig. 12 present
some overlaps. These overlaps may be explained by the
three following reasons. (i) As histograms result from a
study led on a large database of connected speech, the glot-
tal production cannot be expected to be perfectly different
as a function of the produced voice quality. (i) The param-
etrization of the glottal waveforms by a single feature can
only capture a proportion of their differences. (iii) It might
happen for some speech frames that the glottal estimation
fails. Although it is impossible to discern and quantify how
much each of these causes explains overlaps in Fig. 12, we
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Fig. 12. Distributions, computed on a large expressive speech corpus, of glottal source parameters for three voice qualities: (left) the Normalized
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Fig. 13. Comparison between two cycles of typical glottal source for both
soft (dash-dotted line) and loud voice (solid line). The presence of a ripple
in the loud excitation can be observed.

believe that the first two reasons are predominant since
irrelevant decompositions have been removed using the
spectral criterion.

6. Discussion and conclusion

This paper explained the causal-anticausal decomposi-
tion principles in order to estimate the glottal source
directly from the speech waveform. We showed that the
complex cepstrum can be effectively used for this purpose
as an alternative to the Zeros of the Z-Transform (ZZT)
algorithm. Both techniques were shown to be functionally
equivalent to each other, while the complex cepstrum is
advantageous for its much higher speed, making it suitable
for real-time applications. Windowing effects were studied
in a systematic way on synthetic signals. It was emphasized
that windowing plays a crucial role. More particularly we
derived a set of constraints the window should respect so
that the windowed signal matches the mixed-phase model.
Finally, results on a real speech database (logatoms
recorded for the design of an unlimited domain expressive
speech synthesizer) were presented for voice quality analy-
sis. The glottal flow was estimated on a large database con-
taining various voice qualities. Interestingly some
significant differences between the voice qualities were
observed in the excitation. The methods proposed in this

paper may be used in several potential applications of
speech processing such as emotion detection, speaker rec-
ognition, expressive speech synthesis, automatic voice
pathology detection and various other applications where
real-time glottal source estimation may be useful. Finally
note that a Matlab toolbox containing these algorithms is
freely available in http://tcts.fpms.ac.be/~drugman/.
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