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Abstract 
Proteomics is the study of the proteins, their time and location dependent expression 

profiles as well as their modifications and interactions. Mass spectrometry is useful to 

investigate many of the questions asked in proteomics. Typically database search 

methods are employed to identify proteins from complex mixtures. However, often 

databases are not available or despite their availability some sequences are not readily 

found therein. To overcome this problem de novo sequencing can be used to directly 

assign a peptide sequence to an MS/MS spectrum. Many algorithms have been proposed 

for de novo sequencing and a selection of them is detailed in this review. Although a 

standard accuracy measure has not been agreed upon in the field, relative algorithm 

performance is discussed. The current state of the de novo sequencing is assessed 

thereafter and finally, examples are used to construct possible future perspectives of the 

field. 
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Introduction 
Proteomics aims to investigate the complement of a genome, the proteome. The proteome 

is the entirety of proteins that can be expressed by a genome, including alternatively 

spliced and modified products. Today mass spectrometry (MS) is the tool of choice for 

protein identification and quantification [1]. For many forms of quantitation an initial 

identification of peptides and proteins is necessary; see for example [2]. Therefore, the 

correct assignment of an amino acid sequence to each tandem MS (MS/MS, MS
2
) 

spectrum is crucial for many scenarios in mass spectrometry based proteomics. There are 

basically two methods to assign a sequence to MS/MS spectra. One widespread method is 

dependent on the availability of sequences in a database. Simplified, all sequences in the 

database can be scored against the spectrum and the best scoring sequence is then 

accepted as the precursor of the MS/MS spectrum. Sequest [3], Mascot [4], Omssa [5], 

and X!Tandem [6] are just a few examples of the many algorithms available in the field 

of database searching. The downside of database searching is that sequences are not 

always in the database [7]; even in the six frame translation of a genomic database they 

may not be present. Alternative splice forms, short proteins, wrong (even if just slightly) 

https://www.researchgate.net/publication/10857914_Mass_Spectrometry-Based_Proteomics?el=1_x_8&enrichId=rgreq-88ec56af54273138bd99f48ee36c4b1f-XXX&enrichSource=Y292ZXJQYWdlOzUxNzIyNjA1O0FTOjk5MjExMjQwNTQyMjI1QDE0MDA2NjUyMTE4MDc=


gene predictions, and many other factors prevent the correct assignment of sequence to 

spectrum. This further depends on the complexity of the sample, the mass spectrometer 

used, and the settings for false discovery rate. Unfortunately, some tandem mass spectra 

may fit well to an unrelated sequence in the database and thus lead to false 

identifications. Another big problem is posed by post translational modifications (PTMs) 

of amino acids which shift the mass of the precursor and thus renders an assignment of 

sequence to spectrum impossible, unless the modification is anticipated. Peptidomics is 

an emerging field interested in bioactive peptides which, unlike peptides found in high-

throughput studies, do not result from tryptic cleavage and are usually heavily modified 

and therefore may pose problems to database search algorithms [8]. Similar problems 

apply when the target sequences are antibodies [9], hormones, or toxins. 

De novo sequencing, which aims to assign a sequence to MS/MS spectra without the 

need for a sequence database, is the other method used. Although there is no sequence 

database used in this approach, the search space can be represented in the same way (see 

naïve approach). The theoretical search space for de novo sequencing algorithms 

encompasses the entirety of amino acid sequences that can account for the precursor 

mass, within a certain mass tolerance, dictated by the mass spectrometer. The complete 

search space can only be investigated for very small peptides and with increasing length 

quickly poses a problem which cannot be solved in a timely manner, if at all. Many 

algorithms have been developed trying to solve the de novo sequencing problem. Among 

them are naïve approaches, theory graph models, dynamic programming, probabilistic 

and combinatorial algorithms. 

In the following different de novo sequencing algorithms are introduced and a list of 

available tools is given for quick reference. Thereafter, the accuracy and available 

comparisons among popular de novo sequencing tools are assessed. Finally, guidelines 

for the usage of de novo sequencing tools and possible pitfalls are discussed followed by 

an outlook on the development of the field in the near future. 

The de novo Sequencing Problem 
The de novo sequencing problem is the need to assign an amino acid sequence to an 

MS/MS spectrum without the use of a sequence database or other additional information. 

De novo sequencing, of MS/MS spectra, is possible due to the fact that a peptide can be 

fragmented into predictable parts with current methods like collision-induced 

dissociation, CID, or collisionally activated dissociation, CAD, [10,11]. Other methods 

like electron transfer dissociation, ETD, [12] electron capture dissociation, ECD, [13], 

and many more achieve the same result.  

 



 

Figure 1: Theoretically a peptide can fragment at any chemical bond in the molecule. Some 

frequently observed ions are named within the figure (ifi: internal fragment ion, scl: side chain loss). 

The names of the n-terminal ions are indicated on the left of the respective fragmentation border 

whereas the c-terminal portions are named on the right. A subscript indicates their position within 

the sequence in respect to their mass.  

 

Possible fragments have been named (Figure 1) for example a, b, and c for N-terminal 

fragments resulting from backbone cleavage of the amino acid sequence and x, y, and z 

for their complementing C-terminal fragments [14,15]. In the resulting MS/MS spectrum 

the ion types are not known a priori and they cannot easily be determined from basic 

principles for each peak. Thus the ion-types of the peaks in an MS/MS spectrum are 

unknown. Several fragments may further lead to similar mass to charge (m/z) ratios while 

neutral losses of H2O and NH3, for example, complicate the spectrum further. 

One of the challenges in de novo sequencing is thus assigning an ion type to each peak. 

Unfortunately, not all ions from the theoretical fragmentation are found in MS/MS 

spectra and typically, for low accuracy but abundantly available mass spectrometers, the 

low m/z (<300 Dalton, Da) and high m/z (>1800 Da) are not well populated with 

diagnostic peaks. Seidler and his colleagues reviewed the fragmentation process for 

several instrumentations and fragmentation methods in respect to de novo sequencing in 

more detail [16]. 

Any algorithm for de novo sequencing needs to assign an ion-type to the abundant peaks 

in an MS/MS spectrum and needs to establish consecutive ions of the same type, 

differing in the mass of an amino acid (subsequently referred to as ion ladders) which 

then can be assigned an amino acid sequence. This is possible since there should be peaks 

that differ in the mass of an amino acid which indicates that they are of the same ion-

type, forming an ion-ladder. However, due to the number of peaks many spurious 

assignments may be produced in this step. Furthermore, many peaks may be missed thus 

forming a complete ion-ladder to assign a sequence may not be possible. 

Derivatization of peptides to discern n-terminal from c-terminal fragments has been used 

successfully to facilitate de novo sequencing [17,18]. Keough and colleagues found that 

derivatization helped them to get long un-interrupted ion ladders [19]. Derivatization 

methods that simplify MS/MS spectra and fix the precursor charge to one of the 

fragments have been described [20,21]. Although derivatization may aid in de novo 



sequencing, such methods may not be widely adapted since they incur additional cost and 

labor. Thus, de novo sequencing algorithms need to be fast, reliable and shall not incur 

additional cost or experimental preparation steps. Instead of labeling the peptides natural 

isotopes can be used in a similar manner [22]. 

De novo sequencing can be solved in polynomial time when only n-terminal and c-

terminal fragments are considered. Xu and Ma showed that it becomes NP-complete (not 

solvable in linear time) when further fragment types are incorporated [23]. 

Another issue is the mass accuracy of mass spectra. Mass spectra with higher mass 

accuracy from high precision mass spectrometer lead to better de novo predictions [24-

27]. The fragmentation of precursor ions is not always successful, depending on the 

precursor abundance, how much of the precursor has been fragmented and with which 

energy. Therefore, it has been tried to establish the spectral quality prior to performing 

further analyses such as de novo sequencing [28,29]. Spectrum quality is here used in the 

sense of how well the precursor ion is fragmented into expected ions and how much their 

intensity is above potential random noise. It has been suggested that high-energy 

collisional dissociation (high-energy CID) spectra could aid in de novo sequencing [30] 

and it has been found that up to 80% of the high-energy CID spectra contain full or 

almost full ion ladders [31]. 

One problem, for both database search and de novo sequencing, which has not yet been 

properly addressed, is co-fragmentation of peptides with similar mass and retention time 

although there have been approaches in database searching [32]. 

De Novo Sequencing Algorithms 
A large number of de novo sequencing algorithms have been proposed and a non-

comprehensive list of algorithms, which provide an implementation, is presented in Table 

1. Another list of algorithms, which do not provide an implementation, can be found in 

Supplementary Table 1. Both tables contain an algorithm column which can be used to 

roughly group the de novo sequencing algorithms. Therefore, de novo sequencing tools 

using the same basic algorithm are discussed together. 

  

Table 1: Non comprehensive list of published de novo sequencing algorithms with available 

implementation. Information about availability, main algorithmic features, scoring function, and 

additional comments are provided. DP: dynamic programming, CO: commercial, OS: open source, 

EXE executable available, NA: listed source not available at time of writing. The table is sorted by 

decreasing citation count. 

Name Algorithm Scoring Comment Implementation Citation 

PEAKS Generation of 

10
5
 candidate 

sequences, 

DP 

Peak abundance, 

mass fit, fragment 

complementarity 

Commercial 

software, algorithm 

not fully disclosed 

http://www.bioin

for.com:9999/, 

CO 

[33] 

Lutefisk Spectrum 

graph 

Sum of b-ion 

probabilities during 

subseqeuncing 

Rescoring of 

prediction with 

several measures 

http://www.hairy

fatguy.com/lutefi

sk/, OS 

[34] 

PepNovo Spectrum 

graph 

Likelihood ratio 

hypothesis testing in 

respect to random 

model 

Only few learned 

models available 

http://cseweb.ucs

d.edu/groups/bio

informatics/soft

ware.html, OS 

[35] 

PepNovo Spectrum As Sherenga but High precision mass http://peptide.usc [24] 



graph additionally uses 

peak ranks and 

fragment 

dependencies 

spectrometric data 

needed 

d.edu, OS 

Unnamed Matrix 

spectrum 

graph 

Ion abundance ratio Tree searching to find 

all suboptimal 

solutions 

http://hto-

c.usc.edu:8000/

msms/menu/den

ovo.htm, NA 

[36] 

NovoHMM Hidden 

Markov 

model 

Bayesian posterior 

probabilities for 

amino acids 

Tested on 1252 

spectra and compared 

to other algorithms 

http://people.inf.

ethz.ch/befische/

proteomics/, 

EXE 

[37] 

SeqMS Spectrum 

graph 

Ion abundance, 

fragment 

complementarity 

 

Originally for HCD 

spectra later adapted 

for low energy CxD 

http://www.prote

in.osaka-

u.ac.jp/rcsfp/prof

iling/Seqms/Seq

MS.html, EXE 

[18,38] 

EigenMS Spectral 

graph 

partitioning 

Mass fit, ion 

abundance, 

probability to 

observe ion 

Usage of two graphs, http://sourceforg

e.net/projects/eig

enms/, OS 

[39] 

AuDeNs Spectrum 

graph, DP 

Internally calculated 

sum of peak 

relevance 

Assigns relevance to 

peaks during 

preprocessing 

http://www.ti.inf.

ethz.ch/pw/softw

are/audens/, EXE 

[40] 

MSNovo DP, 

mass  array 

spectrum 

representation 

Probabilistic 

distribution of mass 

tolerance 

LCQ/LTQ 

Charges 1-3 

http://msms.usc.e

du/s 

upplementary/ms

novo, NA 

[41] 

MAARIAN Exhausitive 

enumeration 

of peptide 

composition 

Sum of peak 

abundance matched 

by sequence 

MALDI, 

unimolecular 

decomposition, small 

example set, accuracy 

not assessed 

Available upon 

request, EXE 

[42] 

PFIA Exhaustive 

listing of all 

possible 

amino acid 

compositions 

- Ability to aid 

sequencing of cyclic 

peptides 

http://hodgkin.m

bu.iisc.ernet.in/~

pfia/, NA 

[43] 

Vonode Spectrum 

graph 

Based primarily on 

mass accuracy but 

in part also on 

fragment abundance 

Dependent on high 

mass accuracy, Also 

makes sequence tags 

http://compbio.or

nl.gov/Vonode, 

EXE 

[44] 

 

 

Naïve Approach 

One of the first approaches used to assign a sequence to a tandem MS spectrum is the 

brute force, or naïve, approach. In brief, all amino acid sequences approximately 

matching the measured precursor mass are generated and scored against the spectrum. 

The sequence with the highest score is then accepted as the correct solution [45,46]. With 

increasing precursor mass the number of possible sequences increase exponentially 

restricted only by the precursor mass accuracy which prohibits the use of this approach 

above a low mass cutoff [47]. This can be offset with increasing mass accuracy which 



may make this approach viable since the number of possible sequences is more restricted 

as shown in an approach termed composition based sequencing developed by Spengler in 

2004 [27]. See Zubarev and Mann for a disambiguation of mass accuracy and its proper 

usage [48]. Determining the sequence composition of candidates from a database, 

enumerating possible sequences, can also limit the number of sequences that need to be 

explored [42]. The commercial software, PEAKS, also uses exhaustive listing of 

sequences but restricts the amount of sequences to a subset of 10000. Unfortunately, their 

algorithm has not been fully disclosed [33]. The rescoring of candidate sequences has 

later been improved in PEAKS-RM [23].  

Instead of generating full sequences, subsequences can be determined by, for example 

extending short seed sequences determined directly from the MS/MS spectrum [49,50]. 

The DeNovo Explorer by Applied Biosystems, another example for subsequencing, first 

determines all subsequences and then transforms them into theoretical spectra and scores 

them against the experimental spectrum using percentage of matched peak intensity. 

More information is available on the web site of Applied Biosystems: 

http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocu

ments/cms_040353.pdf. Often prefixes cannot be correctly determined and thus correct 

candidates are filtered [51]. Another alternative example for restricting the number of 

candidates determines sequence tags from the spectrum and builds a sequence database 

from these which is then scored against the spectrum [52]. 

Spectrum Graph 

A spectrum graph is the transformation of a peak list into a graph where each m/z value is 

represented by a node in the graph. Nodes are connected by edges if their m/z values 

differ by the mass of an amino acid. As a side effect, random noise in the spectrum is 

reduced since it should not create more additional edges than real fragment ions. 

Unexplained ion types, which may be considered noise by some algorithms, however, 

contribute with additional edges that complicate the spectrum graph. Figure 2 shows a 

spectrum graph where one forward ion-series and one reverse series are shown.  

 

http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocuments/cms_040353.pdf
http://www3.appliedbiosystems.com/cms/groups/psm_marketing/documents/generaldocuments/cms_040353.pdf


F V E V T

VEVT F A

Pm

AEFVEVTK_sergei_digest_B_full_08.0628.0634.3.dta

E

K

K

 

Figure 2: The figure shows the MS/MS spectrum sergei_digest_B_full_08.0628.0634.3.dta from the 

Keller dataset [53]. Ions of the singly charged b- and y-ion series are connected by edges with the 

amino acids as labels on the edges. Other node pairs that differ by the mass of an amino acid are not 

connected to avoid overcrowding of the figure. Pm indicates the precursor mass solid arrows show 

the b-ion series and dashed arrows show the y-ion series. Gray lines and amino acids are interpolated 

and have only partial evidence in the spectrum. The spectrum image was made with DtaViewer 

(http://www.biolnk.com, Allmer, unpublished). 

 

The nodes of the spectrum graph can be drawn on one line as it is done in Figure 2 where 

the value on the m/z axis is taken as the node center. The edges shown only represent the 

b- and y-ion series but many more edges can be drawn. Abundance can be encoded as an 

edge or node weight. In Figure 2 both series are internally uninterrupted and thus lead to 

a correct de novo prediction when the spectrum graph is traversed from either the first 

node or the last node. More information on how a spectrum graph can be traversed can be 

found in the following sections. Note that, the b-ion series gives the sequence in forward 

fashion whereas the y-ion series produces its reverse. In this case the graph can be drawn 

directed since the sequence is known but in general the resulting spectrum graph is 

undirected. Instead of only drawing edges if the mass of an amino acid fits between two 

nodes, the use of different edge types, connecting b-ions, y-ions, as well as 

interconnecting them, can add vital information to the spectrum graph [44]. Yan and 

colleagues took a similar approach and thus increased the information contained in their 

spectrum graph [54]. Bern and Goldberg have further constructed several graphs and 

have used graph partitioning [39]. A spectrum graph is used in further algorithms in 

Table 1 that have not been listed here individually [18,24,31,35,36,38,55-58].  

http://www.biolnk.com/


Dynamic Programming 

Dynamic programming is a technique that can be applied if a problem can be broken into 

smaller problems which are able to solve the larger problems, once solved themselves. 

Furthermore, the ability to build upon intermediate results is necessary for dynamic 

programming, ensuring no recalculations, which makes it especially suitable for finding 

optimal paths through a graph (e. g.: spectrum graph), although faster heuristics exist. 

Therefore, several algorithms make use of this technique for finding a path through the 

spectrum graph which may represent the peptide sequence of the precursor. Dynamic 

programming guarantees to find the optimal result but due to the complexity and not fully 

understood nature of MS/MS data the optimal sequence may not represent the correct 

sequence. In de novo sequencing, dynamic programming can be used to find the path 

potentially representing the correct peptide sequence in a spectrum graph [40,59-61]. A 

mass array encoding all possible peptide sequences can also be traversed by dynamic 

programming [41]. 

Sequence Optimization 

Instead of analyzing the MS/MS spectrum, it is also possible to optimize amino acid 

sequences to determine the one that best fits to the spectrum in respect to a scoring 

function. Genetic algorithms have been used for sequence optimization which is in 

essence quite similar to the naïve approach with the difference that not all possible amino 

acid sequences need to be generated. Instead, a small pool of amino acid sequences is 

generated and then optimized to best fit the MS/MS spectrum. This heuristic comes at the 

cost that finding the optimal result cannot be guaranteed. Moreover, in subsequent runs of 

the same algorithm with the same MS/MS spectrum different sequences may be reported 

as the best result. An early approach probably failed due to the fitness function which was 

not discriminative enough [62]. Heredia-Langner and colleagues, using a different fitness 

function, including shared peak count were more successful on the few spectra that they 

had at their disposal [63]. They compared the results with Lutefisk and reported to have 

similar sequence correctness.  

Other Algorithms 
Some approaches like the creation of spectrum graphs are shared among algorithms and 

are thus discussed in some more detail. Other algorithms like divide and conquer, for 

instance, are not in wide spread use. Zhang has used the divide and conquer algorithm for 

splitting the spectrum into successively smaller sub-spectra until they were solvable by 

the naïve approach and are then recursively re-integrated to solve the input spectrum [64]. 

The use of hidden Markov models, as an example for machine learning algorithms, has 

been used to tackle the de novo sequencing problem [37]. A pattern based algorithm has 

been introduced by Hines and colleagues [65]. Another recent approach seems to employ 

exhaustive listing of subsequences to aid manual interpretation of MS/MS spectra [43]. 

Most de novo sequencing algorithms consider all fragments to be singly charged but 

sequencing accuracy can be increased when using multiple charges as shown by Chong 

and colleagues [66].  



Integrative Approaches 

A tandem MS spectrum has limited information and several MS
2
 spectra may be used to 

add confidence to the information while MS/MS spectra generated with different 

fragmentation models can add information and add additional confidence at the same 

time.  

Bandeira and colleagues clustered MS/MS spectra and were thus able to derive more 

sequence information [67]. Another way of making use of the combination of multiple 

spectra is to collect MS
3
 spectra from selected fragment ions in MS/MS spectra and then 

combining the information to yield more meaningful data [68,69]. 

Zhang and Reilly used a combination of two MALDI fragmentation methods, post source 

decay, PSD, [70] and photodissociation [71]. They reported a sequence prediction 

success of about 91% and the ability to differentiate leucine and isoleucine, alas only on a 

very small dataset of 31 peptides [72]. Their approach makes use of x-ions to derive the 

peptide sequence and then uses y-, v-, and w-ions for further analysis. Datta and Bern 

combined the information contained in CID and ETD fragmentation spectra using an 

algorithm that not only combines the data but also separates n-terminal from c-terminal 

fragments [73]. They reported sequencing accuracies between 17% and 65%.  

Horn and colleagues discerned n-terminal and c-terminal ions using a combination of 

CID and electron capture dissociation, ECD, [13] spectra [74] while Savitsky and 

colleagues used the same fragmentation methods but integrated the information therein to 

yield a higher confidence for their predictions [26]. Zubarev and colleagues also 

investigated how ECD and CID fragmentation methods can be used synergistically and 

further included ETD fragmentation in their study [75]. Li and colleagues investigated 

how the combination of ECD and ETD spectra can aid in de novo sequencing [76].  

Algorithm Comparison 
In the absence of comprehensive datasets that cover the wide range of instrumentation 

and fragmentation possibilities as well as measurement settings it is not possible to 

proclaim one algorithm to be better than any other algorithm except for a particular 

instance of the problem [77]. One public dataset generated with an LCQ mass 

spectrometer from Thermo Electron published by Keller and colleagues [53], has been 

used in several studies to determine the quality of de novo prediction algorithms. It is 

highly desirable to have similar datasets for all types of mass spectrometers to enable a 

more complete picture about the qualities of de novo sequencing algorithms. 

Generally, datasets are created as a by product of other studies and are based on the 

identifications of database search programs which cannot guarantee correct identification; 

see recent reviews on database searching algorithms [78,79]. For benchmarking de novo 

sequencing algorithms this is not acceptable and all spectra should be prepared from 

purified peptides and synthetic peptides to ensure correct sequence assignment.  

Accuracy Definitions 

In order to make de novo predictions comparable, an accuracy measure has to be selected. 

Since an accuracy measure to evaluate de novo sequencing algorithms has not been 

agreed upon, different studies use different quality measures. 



Xu and Ma used two measures, 1) the number of correctly predicted amino acids divided 

by the number of amino acids in the real peptide, and 2) the number of correctly 

predicted amino acids divided by the number of amino acids in the prediction [23]. It also 

needs to be agreed upon when an amino acid is said to be correctly predicted. Xu and Ma 

state that the amino acid must be at the same mass position in the prediction as in the 

correct peptide [23]. But other definitions like the one by Pitzer and colleagues who use 

the notion of longest common subsequence to evaluate the accuracy of sequence 

predictions [80], may equally well define similarity. Another similarity measure was 

given by Pevtsov and colleagues who extended the edit distance algorithm with modifiers 

explicitly modeling expectable problems in de novo predictions [81]. They used relative 

sequence distance as their accuracy measure. Mo and colleagues define the prediction 

accuracy as the ratio of correctly predicted amino acids over total amino acids in the 

predicted peptide (similar to Xu and Ma) and recall as the number of correctly predicted 

residues over the total number of residues in the correct peptide [41]. Bringans and 

colleagues use the former method for their accuracy assessment of de novo sequencing 

algorithms [82]. An all or nothing score, either the sequence is correctly predicted and the 

best prediction of the algorithm, or otherwise is false, may be too harsh a criterion with 

current instrumentation and de novo sequencing algorithms. Nonetheless, it is one of the 

scores employed in a study by DiMaggio and Floudas [55]. They further report the 

prediction accuracy in respect to sequence distance similar to but not exactly like Pevtsov 

and colleagues. They further incorporate percentage of matched amino acid residues and 

correctly predicted subsequences in their study. 

For the future, it would be desirable to agree upon a number of accuracy measures that 

need to be reported in a study comparing different de novo sequencing algorithms. 

Comparisons of Multiple Algorithms 

Currently, there is a trend that each newly developed de novo sequencing algorithm 

compares its results with a selection of other algorithms. Unfortunately, independent 

researchers rarely assess the quality of de novo sequencing algorithms which would 

remove possible biases. In a crude assessment we checked the overlap of sequence 

assignments of several de novo sequencing algorithms with database search results. 

Spectra that had agreeing sequence assignments by Sequest, OMSSA, and X!Tandem, 

were used for this comparison. The outcome was most disappointing for the de novo 

sequencing algorithms which is likely due to the usage of spectra with low mass 

accruracy from an LCQ mass spectrometer (Boz and Allmer, unpublished). 

Xu and Ma used three small datasets to compare PEAKS, their extension to PEAKS 

(PEAKS-RM), and PepNovo and concluded that their new method was better than the 

other methods, with them performing similarly on the datasets that they investigated. For 

their dataset they achieved an accuracy between 6 to 7 out of 10 amino acids [23]. Often, 

as also in this case, de novo sequencing algorithms are tested on rather small datasets 

comprised of high quality spectra [80]. While Pitzer and colleagues improved on this and 

incorporated spectra from several instruments, they still only used a subset of available 

instrumentation and algorithms. They compared Lutefisk and PepNovo and observed that 

PepNovo is more successful on ion trap and MALDI data whereas Lutefisk is more 

successful on QTOF data. From their data it can also be derived that, if an average 

peptide length of 10 is assumed, the correct prediction of more than 6 out of 10 amino 



acids is a rare event. Pevtsov and colleagues compared a larger number of different de 

novo sequencing algorithms, namely Audens, Lutefisk, NovoHMM, PepNovo, and 

PEAKS [81]. Their dataset was somewhat smaller than the one of Pitzer and colleagues 

but one ingredient, the measurements of Keller and colleagues are present in both studies 

as well as in a study by Mo et al. [41]. Pitzer and colleagues found that QStar data, with 

maximum of 50% correct sequences, lead to better predictions for all algorithms as 

compared to LCQ data, with a maximum of 18% correctly sequenced spectra. They 

found that for QStar data PEAKS performs better than Lutefisk and PepNovo, which in 

turn perform better than Audens and NovoHMM. For LCQ data NovoHMM performed 

best with PepNovo and PEAKS close behind, followed by Lutefisk and then Audens. Mo 

and colleagues focused on LCQ and LTQ data and reported that their algorithm performs 

better than PepNovo and NovoHMM with an accuracy between 12% and 50% depending 

on the dataset. Looking at the reported recall values MSNovo, their algorithm, does not 

significantly outperform the other tools and is at times less precise than NovoHMM 

which could put MSNovo on a level with NovoHMM in the Pevtsov study for LCQ data. 

Bringans and colleagues found that for a small data set of 4800 MALDI TOF/TOF 

spectra PEAKS was, with 66%, slightly more accurate than PepNovo and both were more 

than 10% more accurate than Applied Biosystem’s DeNovoExplorer [82]. For QTRAP 

data PepNovo was slightly better than PEAKS and achieved an accuracy of 65%. Both 

were significantly better than DeNovoExplorer which only predicted 27% of the residues 

correctly. DiMaggio and Floudas compared the performance of several de novo 

sequencing algorithms on a very small number of spectra (38) from a QTOF instrument 

[33] and found that their algorithm PILOT performed best with PEAKS Online, 

EigenMS, Lutefisk, and LutefiskXP being decreasingly less accurate in terms of fully 

correct sequence prediction [55]. For ion trap data (36 spectra) they found that PILOT 

performed best with NovoHMM, PepNovo, EigenMS and PEAKS Online, and Lutefisk 

XP being decreasingly less accurate. 

The studies by Bringans and colleagues, Pevtsov and colleagues, as well as Pitzer and 

colleagues were independent assessments of prediction accuracy, whereas the other 

studies mentioned above were a selection of studies that while introducing a new 

algorithm compare it with existing algorithms. 

Determining Sequence Tags 
As shown in the previous section, it is difficult to determine full length sequences from 

MS/MS spectra. In order to map the spectra to their peptide sequence, or several spectra 

to a protein sequence, it is not absolutely necessary to determine full length de novo 

sequences. Short sub sequences, so called sequence tags, can be successfully mapped to 

protein sequences if a sequence database exists. This can be viewed as a special case of 

de novo sequencing where the tags don’t have to be full length sequences. Or, vice versa, 

de novo sequencing could be a special case of determining sequence tags where the tag 

happens to be the full length sequence. Determining short sequence tags with high 

confidence enables the retrieval of peptide sequences from a database that match to this 

tag; a strategy often referred to as filtration. The problem is whether a tag is forward, 

derived from an n-terminal ion series, or reverse, derived from a c-terminal ion series. 

Programs that derive sequence tags from MS/MS spectra are listed in Table 2.  

 



Table 2: A non comprehensive list of algorithms determining a sub sequence (sequence tag) from 

MS/MS spectra. OS: open source, EXE executable available, NA: listed source not available at time 

of writing. The table is sorted by decreasing citation count. 

Name Comment Implementation Citation 

GutenTag Determines short sequences from MS/MS, 

ranked by presence of expected ions 

http://fields.scripps.edu, 

EXE 

[83] 

OpenSea Treats sequence database and mass spectrum 

as a sequence of masses 

http://libopensea.com/, ? [84] 

PepNovoTag Uses PepNovo for tag generation and employs 

a probabilistic approach for tag scoring 

http://proteomics.ucsd.edu/

, NA 
[85] 

DirecTag Evaluates tags in respect to peak intensity, m/z 

fit, and fragment ion complementarity 

http://fenchurch.mc.vander

bilt.edu/bumbershoot/direc

tag/, OS 

[86] 

Spectral 

Profiles 

Creates gapped sequence tags and spectral 

profiles from MS/MS spectra 

NA [87] 

 

Short tags usually map to several peptides in a database so that a combinatorial problem 

needs to be solved. A number of algorithms have been developed to solve this problem 

(see Table 3). The generation of sequence tags is often a prerequisite for the algorithms 

listed in Table 3. GutenTag for instance assembles tags of a user specified length from 

MS/MS spectra and then matches the 25 best scoring tags to a sequence database [83]. 

Tabb and colleagues later applied more rigorous statistical models to the tag generation in 

their DirectTag algorithm [86]. Frank and colleagues emphasize the importance of tags to 

be on a valid global de novo path and add a probabilistic filtering step to the tag creation 

[85]. Instead of using sequence tags Searle and colleagues introduced the notion of mass 

tags treating both database and tag as a sequence of masses [84]. 

 

Table 3: A non comprehensive list of algorithms that map sequence tags or full de novo sequences 

derived from mass spectra to a sequence database. OS: open source, EXE executable available, NA: 

listed source not available at time of writing, OV: online version, AR available upon request. The 

table is sorted by decreasing citation count. 

Name Algorithm Comments Implementation Citation 

MSBlast Accounts for MS specific 

problems and maps tags to 

database 

Uses WU-BLAST2 

for homology 

searching 

http://genetics.bwh

.harvard.edu/msbla

st, OV 

[88] 

Inspect Uses spectrum graph for tag 

generation and trie for 

database search 

Uses filtering of the 

database to find PTMs 

http://proteomics.u

csd.edu, OS 

[89] 

FASTS Integrates the combined 

mapping of multiple short 

sequences to a sequence 

database 

Based on FASTA, 

comes in two flavors, 

FASTS and FASTF 

http://fasta.bioch.vi

rginia.edu/fasta_w

ww2/fasta_list2.sht

ml, OS 

[90] 

CIDentify Uses complete de novo 

sequences with mass gaps  

Allows for common 

errors in the de novo 

prediction 

http://faculty.virgin

ia.edu/wrpearson/f

asta/OLD/CIDentif

y/, EXE 

[91] 

ByOnic Determines likely b- and y-

ions for lookup in the 

subsequent database search 

Tests showed that it 

was more sensitive 

than database search 

algorithms 

NA [92] 

GenomicPe Maps de novo predictions Allows analysis of http://www.allmer. [93,94] 



ptideFinder error tolerantly to a genomic 

database 

intron exon borders 

and can find 

alternative splicing 

events 

de/software/gpf/, 

AR 

MS-

Dictionary 

Matches all plausible de novo 

predictions to the sequence 

database 

They report increased 

sensitivity in 

comparison to 

X!Tandem 

http://proteomics.u

csd.edu, AR 

[95] 

IggyPep Maps de novo predictions 

error tolerantly to an indexed 

genomic database 

Unclear how it 

improved upon 

existing methods 

http://www.iggype

p.org, OV 

[96] 

Spider Accounts for errors in 

sequence tags 

Uses editing 

operations to align 

sequences 

http://bif.csd.uwo.c

a/spider, NA 

[97] 

 

Shevchenko and colleagues used PredictSequence for generation of sequence tags and 

used WU-BLAST2 for matching the sequence tags, while accounting for typical MS 

problems and integrating the resulting database matches [88]. 

Mackey and colleagues build on the FASTA heuristic and added combinatorics to 

integrate multiple short hits and also changed FASTA’s scoring scheme to alignment 

probability [90]. A similar approach has been taken by Johnson and Taylor who have 

used CIDentify, a version of FASTA predating Mackey’s improvement [91]. Lu and 

Chen implemented a search of a sequence database, indexed using a suffix tree, against a 

spectrum graph [98]. The GenomicPeptideFinder (GPF) uses de novo predictions and 

maps them error tolerantly to the six frame translation of a genomic database. It has been 

used to investigate Chlamydomonas reinhardtii and significantly increased the number of 

detected peptides as well as suggested new splicing events [93,94]. RAId [99] and MS-

Dictionary [87] also use multiple de novo sequences to map them to the six frame 

translation of a genomic database. IggyPep uses an indexed genomic database to map de 

novo sequences or sequence tags. It has been used on the genome of Sea Urchin and 

helped to find additional neuropetides [8]. It is, however, unclear how IggyPep improves 

upon GPF, RAId, MSBlast and other methods. Inspect uses sequence tags to filter a 

sequence database to derive candidates that may contain PTMs [89]. 

Instead of using sequence tags, or gapped tags, [87] ByOnic uses lookup peaks to filter 

sequence databases [92]. 

Data Integration 
De novo sequencing provides the complete amino acid sequence of an MS/MS spectrum 

whereas sequence tags only provide short but positioned subsequences. Both can be used 

for error tolerant database search while de novo sequence predictions can also be used 

standalone. Integrating information from de novo sequencing, database search and 

additional resources can increase the confidence in each protein identification [100].  

OVNIp is an application that has recently been published. It allows the exploitation of de 

novo sequences, in tandem with database search programs, to increase the confidence in 

protein identification [101]. In the future, it would be good to have similar tools which 

from de novo peptide predictions create de novo protein predictions and compare these 

with known protein sequences. 



Application 
De novo sequencing has recently gained a lot of attention and numerous studies, making 

use of it, have been published in the last three years. Due to the low accuracy of de novo 

predictions, it is mostly used in tandem with database search algorithms. In this way, 

adding confidence to peptide and protein identification, aiding in enlarging the number of 

MS/MS spectra that can be assigned a sequence, or suggesting MS/MS spectra that could 

be derived from a peptide precursor with a PTM. 

Although more than 60% of amino acid residues can be correctly predicted by some 

algorithms under specific circumstances, only 30% of the peptides are correctly predicted 

[82]. The accurate prediction of full-length sequences remains challenging [31]. This is 

quite limiting when working with unsequenced species or sequences that are not expected 

to be in any database. This is inline with the view of Zubarev and colleagues, who state 

that de novo sequencing is the answer to interpretation of mass spectra but point out that 

adequate accuracy can only be achieved with highly accurate mass spectrometers, using a 

combination of multiple fragmentation methods [75]. 

Regardless of the limitations, de novo sequencing has been used, in high-throughput 

studies and lead to findings that would not have been possible otherwise [102,103]. The 

current limitations of sequencing peptides and proteins de novo is very well documented 

in a study that sequenced a beta-defensin of reptilian origin. The authors faced a 

multitude of problems and resorted to the use of a combination of multiple mass 

spectrometers, multiple fragmentation methods and different derivatization methods, as 

well as getting aid from Edman degradation [104], until they were successful [105]. 

Another study, sequencing a hormone, faced similar problems and came to similar 

conclusions but further added top-down sequencing while not employing Edman 

degradation [106]. 

Outlook 
De novo sequencing may be useful in assigning meaning to unidentified, high quality 

mass spectra, when it is used as a part of an identification pipeline, for example extending 

the one built by Ning and colleagues [107]. Such multi-pass approaches, in contrast to 

multi-search analyses, reduce the number of false negatives while not significantly 

increasing the overall runtime [108]. Therefore it can be expected that de novo 

sequencing will, increasingly, find its way into computational pipelines for MS data 

analysis, as exemplified in a study by Junqueira and colleagues [109], in the near future. 

It has long been recognized in proteomics that standards and standard datasets need to be 

available for benchmarking of the current state of the art and new methods [110]. This is 

not different in de novo sequencing and it seems essential that current tools be properly 

evaluated under a wide range of practical conditions. Although amenable, it is unlikely 

that this will happen within the near future due to constantly changing instrumentation 

and fragmentation methods. 

In general de novo sequencing algorithms are easier adaptable to include the detection of 

post translational modifications than database search algorithms which quickly have to 

face databases of insurmountable size when multiple PTMs are considered. Although 

many de novo sequencing algorithms include the ability to search for static, variable, 

multiple, or a combination of PTMs, due to the infancy of the de novo prediction 



algorithms for PTM detection, they have not been discussed in this review. In the near 

future more tools will be developed that either predict PTMs directly from MS/MS data 

or use multi-pass analysis on a collection of spectra to assign PTMs [111-113]. With 

these methods or a combination of methods, proper assignment of PTMs will become 

possible.  

Expert commentary 
One of the central dogmas in biology, one gene leading to one transcript, has been proven 

false and the real problem seems quite complicated rather than straight forward. This 

includes alternative splicing, alternative start and stop sites and other means that lead to 

unexpected proteins. Mass spectrometry has become predominant for many areas of in 

proteomics. For protein identification database search is being used but this strategy fails 

when any alternative transcripts have not been annotated and are thus not available in 

sequence databases. This problem is elevated since most proteins have not been 

sequenced on the protein level but are mere predictions with large associated errors. 

Mapping EST sequences can help in this case but currently only for abundant transcripts. 

An additional problem inherent in database search algorithms is that the precursor mass 

needs to fit to the sequence within certain bounds which makes post translational 

modifications a difficult problem.  

Therefore, only de novo sequencing algorithms can ultimately be used to sequence 

proteins. This currently comes with the cost that de novo sequencing algorithms are not 

precise enough to provide high confidence in their sequencing results. This may in one 

part be due to the fact that more effort has been put into the development and assessment 

of database search algorithms and in another part be due to the need for high quality 

spectra when performing de novo sequencing. Another point is the large abundance of 

different instrumentation including various fragmentation methods. Peptide 

fragmentation is still under investigation for even established methods and has not been 

fully understood. Fragmentation pathways are the basis for many de novo sequencing 

algorithm and if they were clearly defined the prediction quality would increase 

considerably. At this point it is thus difficult for a user to find the best suited de novo 

sequencing algorithm for their instrumentation. 

It is, however, possible to amend database search results with de novo sequencing results 

and the synthesis of this information can already increase the detectable number of 

proteins and the confidence in their identification.  

Five-year view 
Currently, the number of different instruments and fragmentation methods is constantly 

increasing and this may not stop in the near future making it possible for developers to 

present ever more niche de novo sequencing algorithms targeted to one particular mass 

spectrometer. This does not help the consolidation of current de novo sequencing 

methods and also complicates the independent comparison of their performance which is 

seen by the fact that only few independent comparisons have been made but not within 

the last 3 years.  

A trend, further complicating the matter, to combine spectra from multiple fragmentation 

procedures can be seen in the literature but ultimately it will be necessary to perform 



sequencing using one mass spectrometer with a single fragmentation method to enable 

high throughput analyses and thus these studies may be abandoned in the future. 

Post translational modifications (PTMs) pose a great difficulty to mass spectrometry-

based proteomics if the PTMs are not anticipated. Some studies claim to accommodate 

for even unexpected PTMs and in the near future a focus of the field will be to turn this 

claim into reality for a selected number of high end mass spectrometers. Within the next 

three years some algorithms will be able to sequence short peptides containing one 

unexpected PTM successfully.  

In general, the support for low cost mass spectrometers is decreasing and the focus will 

be on new high end machines which offer a greater success rate for de novo sequencing 

algorithms and it is unlikely that this trend will reverse in the future. 

Within the next five years fragmentation pathways will not be fully understood and thus 

algorithms based on this expert knowledge will still be hampered by unexplained peaks 

within MS/MS spectra. 

Within the next five years the number of comparative studies may increase again 

whenever competing de novo sequencing algorithms are proposed for the same mass 

spectrometer and fragmentation method combination. There will however be very few 

studies comparing de novo sequencing results across platforms a trend which will 

continue until new mass spectrometers are only marginally better than their predecessors.  

Key issues 
 Mass spectrometry is the key tool for performing proteomics. 

 Database search algorithms, and those using sequence tagging, have inherent 

problems that prevent them from identifying all possible amino acid sequences. 

 De novo sequencing is similar to sequence tagging but provides a full length 

amino acid sequence; it is dissimilar from it and database search algorithms in 

that it is independent of any additional information than contained in an MS/MS 

spectrum. 

 De novo amino acid sequencing from MS/MS spectra offers the possibility to 

sequence any peptide or protein precursor. 

 Many de novo sequencing approaches have been proposed using a wide variety of 

algorithms to solve the de novo sequencing problem. 

 It is difficult to compare existing algorithms since they are often targeted to  

specific experimental setups and since no quality measures have been agreed 

upon in the field. 

 The accuracy of de novo predictions is not yet good enough to solely rely on them 

for the sequencing of a proteome. 

 Although it is possible, for most existing algorithms, to include post translational 

modifications this is not discussed in this review due to the infancy of the field in 

this respect. 

 Integrative approaches using a combination of methods are able to elevate this 

problem for already sequenced organisms; thus being able to combine database, 

sequence tagging, de novo sequencing and other information. 
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