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Abstract: In this study, the Coleman-hysteresis model is utilised in the piezoelectric actuator (PZTA) dynamic model and
a non-linear robust control strategy is then developed to actively control the displacement of the PZTA effective tip. The
proposed control technique is designed based on the partial knowledge of the hysteresis model while the mass of the PZTA
is assumed to be uncertain. The piezoelectric charge measurement is utilised in the controller design to reduce the effects
of the hysteresis. Lyapunov-based stability analysis techniques are utilised to ensure that a desired displacement trajectory is
accurately tracked. Representative numerical results are presented and discussed to demonstrate the tracking performance of
several desired displacement trajectories with different frequencies and amplitudes. Finally, comparisons with a standard PID
controller and a sliding mode controller were performed to examine the effectiveness of the proposed control design.

1 Introduction

Piezoelectric actuator (PZTA)-based systems are emerging
as an important technology for precise positioning and
have received wide attention in both the scientific and
industrial communities. The main advantages of the PZTAs
are: (i) no wear, (ii) high efficiency, (iii) almost infinite
small positioning ability, (iv) ultra-fast expansion and (v)
capability to deliver large actuation forces [1]. PZTAs are
capable of completing high-precision actuation tasks and
they are often utilised in motion actuation applications,
because of their high stiffness, fast response and physically
unlimited resolution [2] and can be used as either sensors
or actuators in control systems [3]. They play an important
role in many vital applications such as scanning tunnelling
microscopy [4], scanning probe microscopy [5, 6], laser
applications [7], hydraulic servo control systems [8] and
hard disk drives [9–15].

The main challenging issue in precision positioning
with the PZTAs is the strong hysterical activity because
of their composition from ferroelectric ceramic materials
[16]. Specifically, an applied voltage is typically the input
control signal which activates the PZTA. In the event that
the input control voltage is relatively large, the PZTA
exhibits a significant amount of distortion because of the
inherent hysteresis in the device, and this effect may
reduce the stability of the system in feedback control
applications [17]. Owing to this non-linear behaviour, the
accuracy of the PZTAs are deteriorated in precise tracking
control applications [16]. Hence, efficient non-linear control

strategies are needed to ensure stability and to guarantee
accurate tracking for the use of the PZTAs in micro/nano-
positioning systems and tracking applications.

Some of the earlier research has focused on establishing
accurate PZTA dynamic models whereas other research has
focused on the development of control strategies for use in
precision positioning and tracking applications. In Huang
and Lin [18], provided a concise literature summary with
regard to modelling the PZTA’s dynamics and Devasia et al.
[19] provided a survey of control issues in nanopositioning
including control of PZTAs. Recently, the literature has
focused on the development of alternate models to describe
the hysteresis within the PZTA, owing to the challenging
non-linear nature of this phenomenon. In Bashash and Jalili
[20], proposed a dynamic model by combining the Prandtl–
Ishlinskii hysteresis operator with a second-order linear
dynamics. In Yeh et al. [21], included a non-linear spring
element into the hysteresis model and utilised a Maxwell-
slip structure, whereas Ji et al. [22] used a support vector
regression non-linear model and neural networks. In Lining
et al. [23], proposed a new mathematical model to describe
complex hysteresis that is based on a new parameter called
the turning voltage of a PZTA. They were able to utilise this
parameter to suppress the inherent hysteresis to within ±1%
full span range of a PZTA. In Shieh et al. [24], developed a
parametrised hysteretic friction function, based on the LuGre
model, to describe the PZTA hysteresis behaviour, and
more recently, Ru et al. [25] proposed a new mathematical
model for the hysteresis by using polynomial fitting. Owing
to the dependence of the models in [23–25] on constant
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parameters, adaptive displacement tracking controllers with
parameter adaptation algorithms were designed.

Some of the earlier research [17, 26–29] was devoted
to improve the PZTA control strategies by reducing
the effects of the non-linearities in the PZTA dynamic
models which was achieved by applying electric charge
feedback information instead of applied voltage. In [26,
27], researchers demonstrated that voltage to displacement
linearisation of a PZTA may be achieved if the control
input is the applied electric charge rather than the applied
voltage. Furutani et al. [28] was able to improve the PZTA
control strategy by combining induced charge feedback
with an inverse transfer function compensation. Vautier and
Moheimani [17] showed that applying an electric charge to
control the position reduces the effects of the non-linearity in
the PZTA dynamics. Further, in [29], Main et al. presented
experimental data from tests for both voltage and charge
control which showed that charge control is significantly
more linear and less hysteretic than voltage control over the
same actuator displacement range.

Other research in the literature has focused on the
development of intelligent control schemes for the precision
control of PZTAs [1, 2, 30–37]. Neural networks and
fuzzy controls were also utilised to model the PZTA
hysteresis non-linearities and control the micro/nano motion
of the PZTA [1, 32]. Liaw et al. [2] proposed a
robust control strategy for precise positioning tracking.
The implementation of their control law required only a
knowledge of the estimated system parameters and their
corresponding bounds as well as the bound of the hysteresis
effect including disturbances. Stepanenko and Su [31]
introduced and implemented an approximation function to
compensate for the hysteresis non-linearities by fuzzy logic
techniques. Some of these designs were based on the inverse
hysteresis model that is assumed to be known a priori,
so feedforward techniques can be utilised in the control
design [30, 33]. In [1, 34–36], feedback linearisation was
utilised to compensate for the hysteresis dynamics and then
tracking controllers were implemented. Wu and Zou [37]
presented an inversion-based iterative control approach to
compensate for both the hysteresis and the vibrational
dynamics variations during high-speed, large-range tracking.
The focus of recent research was devoted to the design and
application of robust control techniques to PZTA systems
for micro/nanomanipulation [20, 38–44].

In this paper, the displacement of a PZTA is actively
controlled to track a desired trajectory. The dynamic model
of the PZTA is based on Coleman–Hodgdon hysteresis
model in [45]. Since charge feedback controllers reduce
the effects of the non-linearities in the PZTA dynamic
model and provide better performance over the voltage
feedback controllers [17, 26–29, 46] the electric charge
feedback is utilised in the controller design to reduce the
effects of the hysteresis in the PZTA dynamic model. The
feedback charge of the PZTA is obtained by measuring
the voltage across a capacitor that is added in-series to the
PZTA circuit. A non-linear robust control strategy is then
developed based on the partial knowledge of the hysteresis
model. In the control design, the mass of the PZTA is
assumed to be uncertain. Lyapunov-based tools are utilised
in the development of the robust controller and to prove
tracking of a desired trajectory by practically regulating the
error signal to zero. Representative numerical results are
presented for different desired trajectories to demonstrate
the proof of concept of the active control approach. This
rest of the paper is organised as follows. In Section 2,

a Coleman–Hodgdon-based hysteresis model along with
the PZTA dynamic model are presented. In Section 3, a
non-linear robust control scheme is developed along with
the stability analysis which verifies that the piezoelectric
desired displacement can be tracked. In Section 4, numerical
results are presented to demonstrate the performance of the
proposed robust control strategy and the concluding remarks
are provided in Section 5.

2 PZTA system model

2.1 PZTA elongation dynamics

A PZTA with a single elongation axis, depicted in Fig. 1,
can be dynamically modelled as

mÿ + FL = Fp (1)

where m ∈ R is the PZTA mass, L ∈ R is the non-
activated length of the PZTA, Fp(t) ∈ R is the force
generated by the PZTA elongation, FL(y, ẏ) ∈ R is the
perpendicular forces acting on the PZTA, y(t), ẏ(t), ÿ(t) ∈ R

are the displacement, velocity and acceleration of the PZTA
effective tip of elongation, respectively. An equivalent
circuit model of the PZTA can be presented as shown in
Fig. 2.

In the equivalent model in Fig. 2, V (t) ∈ R is the
applied input control voltage, q̇(t) = i(t) ∈ R represents
the current flowing through the PZTA, Cm ∈ R

+ is a
series connected capacitor that facilitates the measurement
of the induced charge q(t) ∈ R, through a measurement of
the voltage Vm(t) ∈ R by utilising q = CmVm. In Fig. 2,
the circuit element indicated by H models the inherent
hysteresis between the voltage Vh(t) ∈ R across it and the
induced charge q(t). The parameter Cc ∈ R

+ is the internal
capacitance of the PZTA, q̇c(t) ∈ R is the current flowing
through Cc and Vc(t) ∈ R is the voltage across it. The circuit
element indicated by Tem represents the elongation model,
where Tem ∈ R

+ is the elongation constant inherent to the
PZTA [2], and q̇p(t) ∈ R denotes the current flowing through
this circuit branch.

2.2 Hysteresis model

A non-linear hysteresis model H (Vh) ∈ R can be defined to
describe the relationship between the input voltage Vh(t) and
the induced charge q(t). The following hysteresis model will

Fig. 1 PZTA elongation induced by applied voltage
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Fig. 2 PZTA equivalent circuit model

be utilised [45, 47]

q = H (Vh) � f (Vh) + d(Vh) (2)

where f (Vh) ∈ R is a subsequently defined signal [see e.g.
(36)]. When Vh(t) is increasing (i.e. when V̇h(t) > 0 and
Vh(t) > Vho ) the function d(Vh) ∈ R is defined as follows

d(·) � [qo − f (Vho)]e−δ(Vh−Vho )

+ e−δVh

∫Vh

Vho

(g(τ ) − f ′(τ ))eδτ dτ (3)

and when Vh(t) is decreasing (i.e. when V̇h(t) < 0 and
Vh(t) < Vho ) the function d(Vh) ∈ R is defined as follows

d(·) � [qo − f (Vho)]e−δ(Vho −Vh)

+ eδVh

∫Vh

Vho

(f ′(τ ) − g(τ ))e−δτ dτ (4)

where qo ∈ R is the induced charge at t = to, Vho ∈ R is
the input voltage at t = to, δ ∈ R

+ is a constant, f ′(·) =
∂f (Vh)/∂Vh and g(·) ∈ R a subsequently designed signal
[see e.g. (37)]. The signals d(Vh), f (Vh) and g(Vh) ∈ R have
the following properties [47]:

Property 1: The function f (Vh) is piecewise smooth,
monotone increasing and odd.

Property 2: The function g(Vh) is piecewise continuous, and
even.

Property 3: The function f (Vh), is known, and invertible,
such that V h = f (Vh), and Vh = f −1(V h).

Property 4: The function f ′(·) is not identically zero, hence,
f ′(∞) = ηo, where ηo ∈ R

+ is a constant.

Property 5: The function g(Vh) has a finite upper limit [i.e.
f ′(∞) = g(∞)] where f ′(Vh) ≥ g(Vh).

Property 6: The function d(Vh) is bounded as

|d| ≤ ηd (5)

where ηd ∈ R
+ is a constant (see Appendix 1 for proof).

2.3 Elongation model

The elongation model of the PZTA is described by the
following two linear relationships [2]. First relationship
models the effect of the induced charge, denoted by qp(t),
on the displacement of the elongation axis and is described
as follows

qp � Temy (6)

and the second relationship depicts the force Fp(t) imparted
by the elongation action as a function of the voltage Vc(t)
as follows [2]

Fp � TemVc (7)

2.4 Dynamic model

To facilitate the subsequent control objective, a dynamic
expression is aimed that relates the displacement of the
elongation axis y(t) as a function of charge q(t) induced
within the PZTA. The advantage of working with such a
dynamic model is clear owing to the lack of the hysteresis
terms, which has been discussed in the literature [17, 28, 29].
From Fig. 2, it is clear that the induced charge q(t) can be
described as

q = CcVc + qp (8)

After utilising (8), the elongation dynamics in (1) can be
written as

mÿ + FL =
(

Tem

Cc

)
q (9)

where (6) and (7) were utilised and the variable FL(y, ẏ) ∈ R

is defined as

FL � FL +
(

T 2
em

Cc

)
y (10)

To facilitate the tracking control design, three assumptions
frame the analysis.

Assumption 1: The parameters Cc, Cm and Tem are assumed
to be known, and constants with respect to time.

Assumption 2: The velocity ẏ(t) and displacement y(t) of
the PZTA effective tip are assumed to be measurable.
The velocity measurement can be manufactured digitally
using y(t) and the backwards differentiation algorithm, or
a variable structure observer can be used [48].

Assumption 3: It is assumed that the forces FL(y, ẏ) and their
first time derivative ḞL(·) are bounded provided that y(t),
ẏ(t) and ÿ(t) are bounded.

3 Robust control development

3.1 Control design objective

The control objective is to ensure that the displacement y(t)
of the PZTA effective tip tracks the desired trajectory yd(t) ∈
R in the following sense

|yd(t) − y(t)| ≤ ε as t → ∞ (11)

where ε ∈ R
+ is a constant that can be selected arbitrary

small and also guaranteeing that all the system signals
remain bounded under the closed-loop operation.
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Assumption 4: The subsequent analysis requires the standard
assumption that the desired trajectory is selected such that
yd(t), ẏd(t), ÿd(t) are bounded.

To facilitate the subsequent development, a filtered
tracking error signal, denoted by r(t) ∈ R, is defined as

r � ė + αe (12)

where α ∈ R
+ is a control gain and the displacement

tracking error, denoted by e(t) ∈ R, is defined as

e � yd − y (13)

Based on the definition of e(t) in (13), it is clear that if
|e(t)| ≤ ε, then |yd(t) − y(t)| ≤ ε, thus, meeting the control
objective.

3.2 Closed-loop error system

To facilitate the development of a closed-loop error system,
a control strategy must be developed to account for the
inherent hysteresis which exists between the input voltage
Vh(t) and the induced charge q(t). It is clear from Fig. 2
that an expression for Vh(t) can be obtained as follows

Vh = V − Vm − Vc (14)

After utilising (14), the charge expression in (2) can be
rewritten as follows

q = f (V − Vm − Vc) + d(Vh) (15)

To meet the tracking control objective, the control input V (t)
is designed as follows

V � Vm + Vc + f −1(V h) (16)

where V h(t) ∈ R is a subsequently designed auxiliary
control signal, and Property 3 was utilised.

Remark 1: From (8), the voltage Vc(t) can be obtained as

Vc = 1

Cc
(q − qp) (17)

where the charge qp(t) is computed from (6), and the charge
q(t) is computed from the measurement of Vm(t) across the
capacitor Cm (i.e. q = CmVm).

After utilising (2) and (16), the expression in (15) can be
rewritten as follows

q = H (Vh) � V h + d(Vh) (18)

To facilitate the closed-loop error system development, an
auxiliary error signal s(t) ∈ R is defined as

s � qd − q (19)

where qd(y, ẏ) ∈ R is a subsequently designed desired
charge. After utilising (18), the following expression can be
obtained for the auxiliary error signal s(t)

s = qd − V h − d(Vh) (20)

Based on (20), the auxiliary control signal, V h(t) is designed
as

V h � qd + kss (21)

where ks ∈ R
+ is a constant gain.

The auxiliary control signal in (21) can be substituted into
(20) to obtain the following expression

s = −kss − d(Vh) (22)

from which the auxiliary error signal s(t) can be upper
bounded as

s ≤ |d|
1 + ks

≤ ηs (23)

where ηs ∈ R
+ is a constant and Property 6 was utilised.

With the control concept in place to account for the
voltage to charge hysteresis, the dynamic model as defined
in (9) is now incorporated to complete the closed-loop error
system development. From the PZTA dynamics in (9), the
following expression can be obtained

mÿ + FL +
(

Tem

Cc

)
s =

(
Tem

Cc

)
qd (24)

where (19) was utilised. To facilitate the development of the
closed-loop error system for r(t), the first time derivative of
(12) is taken and then both sides are multiplied by m, thus,
obtaining the following expression

mṙ = mÿd + FL +
(

Tem

Cc

)
s −

(
Tem

Cc

)
qd + αmė (25)

where the second time derivative of (13) and (24) were
utilised. To facilitate the subsequent analysis, the expression
in (25) is rewritten as

mṙ = ∼
N +Nd − e +

(
Tem

Cc

)
s −

(
Tem

Cc

)
qd (26)

where the auxiliary signal
∼
N (y, ẏ) ∈ R is defined as

∼
N� N − Nd (27)

where the auxiliary signal N (y, ẏ, ÿd) ∈ R is defined as

N � mÿd + FL + e + αmė (28)

and the auxiliary signal Nd(t) ∈ R is defined as

Nd � N |y=yd ,ẏ=ẏd

= mÿd + FLd (29)

where FLd(yd, ẏd) � FL(y, ẏ)|y=yd ,ẏ=ẏd ∈ R. By utilising (27)–
(29), the following inequality can be developed (see
Appendix 3 for further details)

|Ñ | ≤ ρ(‖z‖)‖z‖ (30)

where ρ(‖z‖) ∈ R is a positive, non-decreasing function of
its argument and z(t) ∈ R

2 is the combined error signal
defined as follows

z = [e r]T (31)

Based on (26), the auxiliary desired charge signal qd(y, ẏ) is
designed as

qd =
(

Cc

Tem

) [
krr + 1

ε
ρ(‖z‖)2‖z‖2r

]
(32)

where kr ∈ R
+ is a constant gain and ε ∈ R

+ is a small
constant. After substituting (32) into (26), the following
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closed-loop error system can be obtained

mṙ = Ñ + Nd − e +
(

Tem

Cc

)
s − krr − 1

ε
ρ(‖z‖)2‖z‖2r

(33)
It is to be noted that the controller given in (16), (21) and
(32) was designed on the assumption that the mass of the
PZTA is not available for control development.

3.3 Stability analysis

Theorem 1: The controller given in (16), (21) and (32)
ensures that |e(t)| ≤ ε as t → ∞ provided the control gain
kr , introduced in (32), is sufficiently large, and hence, e(t) is
practically regulated to zero. The controller also guarantees
that all closed-loop signals remain bounded.

Proof: See Appendix 2. �

4 Numerical results

Numerical simulations were performed to demonstrate the
proof of concept of the proposed robust tracking controller.
The PZTA dynamic model, introduced in (24), was used to
implement the actuator in the numerical simulation study.
The PZTA parameters were set as Cc = 1.5 μF and Tem =
1 N/V. To prove the robustness of proposed controller
design, the mass of the PZTA was chosen to be a time-
varying function as follows

m = 0.1 sin(6000 π t) + 0.11 kg (34)

The measurement capacitor Cm was omitted for this
simulation owing to ability to measure the charge q(t)
within the simulation environment. The forces FL(y, ẏ) on
the PZTA was defined as

FL = ky + bẏ (35)

where k = 14.2 × 106 N/m, and b = 7540 N s/m. The
voltage to charge hysteresis model is implemented using the
expressions in (2)–(4), where the following functions are
utilised [45]

f = A tanh(ξVh) + μoVh (36)

g = ∂f

∂Vh
(1 − γ e−β|Vh |) (37)

where δ = 0.1, A = 5000, ξ = 0.6, μo = 0.1, γ = 0.6, β =
0.1 and tanh(·) is the standard hyperbolic tangent function.
The expressions selected for f (Vh) and g(Vh) in (36) and
(37) satisfy Properties 1–5.

The proposed controller was first tested in tracking a
variable amplitude desired trajectory as shown in Fig. 3.
The control gains were tuned and chosen as α = 2 × 105,
kr = 105, ks = 100, ε = 10−5, ρ = 100 and the sampling
frequency was chosen as 10−6 Hz. The PZTA desired
trajectory yd(t) against actual displacement y(t), tracking
error e(t), voltage V (t) and the hysteresis response are
presented in Figs. 3–6, respectively. These numerical
simulation results clearly indicate that the proposed robust
controller can track variable amplitude desired trajectory
where 2.5% maximum transient tracking error and 0.8%
maximum steady-state error were achieved.

4.1 Comparison with a PID controller

In this section, the proposed robust controller was compared
with a PID controller. The following desired trajectory
was selected

yd = 3 sin(2π fdt − 0.5π) + 3 μm (38)

where fd ∈ R is the frequency of the desired trajectory and
the initial conditions were set to be as

q(t0) = 0 C, V (t0) = 0 V (39)

y(t0) = 3 μm, ẏ(t0) = 0 (40)

where t0 = 0 s. Three different frequencies (i.e. 10, 100 and
1000 Hz) were selected for the desired trajectory in (38) to
demonstrate bandwidth of the proposed approach. For all
three different frequencies, sampling frequency was chosen
as 10−7 Hz, and the control gains were tuned and chosen
as α = 104, kr = 5 × 106, ks = 100, ε = 10−5, ρ = 100. To
test the effectiveness of the proposed non-linear controller
in (16), (21) and (32), it was compared with a standard
PID controller (Vh = kpe + ki

∫t

t0
e(τ )dτ + kd ė) with gains

of kp = ki = 5 × 106, kd = 1 × 103. The tracking errors e(t)
are presented in Figs. 7–9, for the selected frequency
fd = 10 Hz, fd = 100 Hz and fd = 1000 Hz, respectively. The
control voltage inputs V (t) are presented in Figs. 10–12,
for the selected frequency fd = 10 Hz, fd = 100 Hz and fd =
1000 Hz, respectively.

In order to quantify the performance of each controller,
the following measures were computed

Me �
∫ t

t0

|e(ρ)|2dρ (41)

MV �
∫ t

t0

|V (ρ)|2dρ (42)

where Me(t) and MV(t) are measures of the magnitude of
the tracking error and the control voltage input, respectively,
over the period of operation of the system. Table 1 shows
the measures for both the proposed non-linear controller
and standard PID controller. From Table 1, it is clear
that the tracking performance using the robust non-linear
controller was superior when compared with a standard PID
controller.

4.2 Comparison with a sliding mode controller

In this section, the proposed robust controller was further
compared with the sliding mode controller in [43]. The
following multi-frequency signal was selected as the desired
trajectory

yd = 5.2 − 0.5 cos(30π t) − cos(20π t) − 1.3 cos(10π t)

− 2.5 cos(16π t) μm (43)

where the control gains were tuned and chosen as α =
2 × 105, kr = 105, ks = 100, ε = 10−5, ρ = 100 and the
sampling frequency was chosen as 10−6 Hz. The initial
condition was set y(t0) = 0 and a 10% mismatch was
considered for Cc and Tem. The PZTA desired trajectory
yd(t) against actual displacement y(t), tracking error e(t),
voltage V (t) and the hysteresis response are presented in
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Fig. 3 PZTA variable amplitude desired trajectory yd(t) against actual displacement y(t)

Fig. 4 PZTA tracking error e(t) for the variable amplitude desired trajectory

Fig. 5 Voltage V (t) for the variable amplitude desired trajectory
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Fig. 6 Hysteresis response for the variable amplitude desired trajectory

Fig. 7 PZTA tracking error e(t) for a desired frequency of 10 Hz

Fig. 8 PZTA tracking error e(t) for a desired frequency of 100 Hz
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Fig. 9 PZTA tracking error e(t) for a desired frequency of 1000 Hz

Fig. 10 Voltage V (t) for a desired frequency of 10 Hz

Fig. 11 Voltage V (t) for a desired frequency of 100 Hz
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Fig. 12 Voltage V (t) for a desired frequency of 1000 Hz

Table 1 Comparison of tracking error measure for different controllers

Robust controller PID controller

10 Hz 100 Hz 1000 Hz 10 Hz 100 Hz 1000 Hz

Me 7.419 × 10−16 7.409 × 10−16 6.623 × 10−16 9.713 × 10−16 9.679 × 10−16 9.418 × 10−16

Mv 137.9 15.89 6.71 297.4 30.95 7.379

Fig. 13 PZTA multi-frequency desired trajectory yd(t) against actual displacement y(t)

Figs. 13–16, respectively. When compared with the results
in [43], the proposed robust controller achieved less than
0.66% tracking error, while the sliding mode controller in

[43] achieved less than 1.9% (as reported in [43]). This
result clearly indicates that the proposed robust controller
outperforms similar controllers in the literature.
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Fig. 14 PZTA tracking error e(t) for the multi-frequency desired trajectory

Fig. 15 Voltage V (t) for the multi-frequency desired trajectory

Fig. 16 Hysteresis response for the multi-frequency desired trajectory
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5 Conclusion

In this paper, a non-linear robust controller for a PZTA was
developed to guarantee that PZTA’s effective tip is driven
to track a desired trajectory. The PZTA’s charge feedback
along with the partial knowledge of the hysteresis model
was utilised in the design of the non-linear robust control
strategy. The Coleman–Hodgdon hysteresis model [45] was
utilised in the dynamic model of the PZTA. Lyapunov-
based analysis tools were utilised to prove that the tip
tracking error is practically regulated to zero. Representative
numerical results were presented to illustrate the proof of
concept of the proposed robust controller.
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8 Appendix 1: Proof of Property 6

Lemma 1: Based on the definitions presented in (3) and (4),
the function d(Vh) can be upper bounded as shown in (5) if
limVh−→−∞ d(Vh) = limVh−→+∞ d(Vh) = 0.

Proof: Based on the status of Vh(t), two cases arise for the
hysteresis model as in (3) and (4).

Case I: When Vh(t) is increasing and Vh(t) > Vho , the limit
of the right-hand side of the expression in (3) can be written
as follows

lim
Vh−→+∞

(
[qo − f (Vho)]e−δ(Vh−Vho )

+ e−δVh

∫Vh

Vho

(g(τ ) − f ′(τ ))eδτ dτ

)
(44)

since qo and f (Vho) are constants, the expression in (44) can
be rewritten as follows

[qo − f (Vho)] lim
Vh−→+∞

e−δ(Vh−Vho )

+ lim
Vh−→+∞

e−δVh lim
Vh−→+∞

∫Vh

Vho

(g(τ ) − f ′(τ ))eδτ dτ (45)

It is clear that limVh−→+∞ e−δ(Vh−Vho ) = 0 and limVh−→+∞
e−δVh = 0 and from Properties 4 and 5, the following bound
can be obtained for the integral term in (45)

∣∣∣∣
∫∞

Vho

(g(τ ) − f ′(τ ))eδτ dτ

∣∣∣∣ ≤ η1 (46)

where η1 ∈ R
+ is a constant. Hence, it is clear that

limVh−→+∞ d(Vh) = 0.
Case II: When Vh(t) is decreasing and Vh(t) < Vho , the limit
of the right-hand side of the expression in (4) can be written

as follows

lim
Vh−→−∞

(
[qo − f (Vho)]e−δ(Vho −Vh)

+ eδVh

∫Vh

Vho

(f ′(τ ) − g(τ ))e−δτ dτ

)
(47)

By following the same steps in Case I, the limit in (47) can
be rewritten as follows

[qo − f (Vho)] lim
Vh−→−∞

e−δ(Vho −Vh)

+ lim
Vh−→−∞

eδVh lim
Vh−→−∞

∫Vh

Vho

(f ′(τ ) − g(τ ))e−δτ dτ (48)

It is clear that limVh−→−∞ e−δ(Vho −Vh) = 0 and limVh−→−∞
eδVh = 0 and from Properties 4 and 5, the upper bound
in (46) is satisfied for Case II too. Hence, it is clear that
limVh−→−∞ d(Vh) = 0. From the results obtained in Cases I
and II, it is obvious that |d(Vh)| ≤ ηd. �

9 Appendix 2: Proof ofTheorem 1

Let P(z, t) ∈ R denote the following non-negative function

P � 1

2
e2 + 1

2
mr2 (49)

Note that the right-hand side of (49) can be bounded as
follows

λ1‖z‖2 ≤ P(z, t) ≤ λ2‖z‖2 (50)

where λ1, λ2 ∈ R
+ are bounding constants. After taking the

time derivative of (49), the following expression can be
written as

Ṗ = −αe2 − krr
2 +

(
Tem

Cc

)
rs + rNd + rÑ

− 1

ε
ρ(‖z‖)2‖z‖2r2 (51)

where (12) and (33) were utilised. By utilising (30), and the
triangle inequality, Ṗ(t) can be upper bounded as follows

Ṗ ≤ −α|e|2 − kr|r|2 +
(

Tem

Cc

)
|r||s| + |r||Nd|

+ |r|ρ(‖z‖)‖z‖ − 1

ε
ρ(‖z‖)2‖z‖2|r|2 (52)

Note that the terms |r(·)||s(·)| and |r(·)||Nd(·)| can be upper
bounded as follows

|r||s| ≤ 1

δ1
|r|2 + δ1|s|2 (53)

|r||Nd| ≤ 1

δ2
|r|2 + δ2|Nd|2 (54)

where δ1, δ2 ∈ R
+ are constants. After utilising (53) and

(54), the expression on the right-hand side of (52) can be
upper bounded as follows

Ṗ ≤ −λ3‖z‖2 + ρ(‖z‖)‖z‖|r|
(

1 − 1

ε
ρ(‖z‖)‖z‖|r|

)
+ εo

(55)

where λ3 � min{α, (kr − (Tem/Ccδ1) − (1/δ2))}, provided
kr is selected such that kr ≥ ((Tem/Ccδ1) + (1/δ2)). The
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variable εo ∈ R
+ is defined as follows

εo �
(

Temδ1

Cc

)
|s|2 + δ2|Nd|2 (56)

The expression in (56) can be upper bounded by the
following

εo ≤
(

Temδ1

Cc

)
η2

s + δ2η
2
Nd

(57)

where the following bound was utilised

|Nd| ≤ ηNd (58)

where ηs, ηNd ∈ R
+ are constants, and (23) and Property 6

were utilised. From (55), two cases arise.

Case I: When (ε < ρ(‖z‖)‖z‖|r|), the expression in (55) can
be written as follows

Ṗ ≤ −λ3‖z‖2 + εo (59)

where the term ρ(‖z‖)‖z‖|r|(1 − 1/ερ(‖z‖)‖z‖|r|) in (55)
will always be negative.
Case II: When (ε > ρ(‖z‖)‖z‖|r|), the expression in (55)
can be written as follows

Ṗ ≤ −λ3‖z‖2 + ε1 (60)

where ε1 ∈ R
+ is defined as ε1 � ε + εo.

In both cases, (59) and (60) can be written as follows

Ṗ ≤ −λ3

λ1
P + ε1 (61)

From (61) it is clear that ‖z‖ is upper bounded as follows

‖z‖ ≤ √
βo exp(−β1(t − t0)) + β2(1 − exp(−β1(t − t0)))

(62)

where βo = λ2/λ1‖z(to)‖2, β1 = λ3/λ1, and β2 = ε1/λ3.
From (62) it is clear that z(t) is practically regulated to 0 as
t −→ ∞, hence, from (31), e(t) is practically regulated to 0
as t −→ ∞, thus meeting the tracking control objective. It is
clear from (50) and (61), it is clear that P(z, t) ∈ L∞; hence
z(t), r(t), e(t) ∈ L∞. From (12), it is clear that ė(t) ∈ L∞.
Assumption 4 can be utilised along with (13) and its first
time derivative to show that y(t), ẏ(t) ∈ L∞. Since z(t),
r(t) ∈ L∞, from (32), it is clear that qd(t) ∈ L∞. From the
bounding statements in (19) and (23), it is clear that q(t) ∈
L∞, thus Vm(t) ∈ L∞. From (21), it is clear that V h(t) ∈ L∞.
From (6) and (8), it is clear that qp(t), Vc(t) ∈ L∞; thus,
from (16), it is clear that V (t) ∈ L∞. After utilising the
above boundedness statements along with (1) and (7), it is
clear that ÿ(t) ∈ L∞. Standard signal chasing arguments can
be used to prove that all remaining closed-loop signals are
bounded.

10 Appendix 3: Upper bound development

In this appendix, the bound expression in (30) will be
proven. The definition in (28) can be rewritten as follows

N (y, ẏ, e, r, ÿd) = mÿd + FL + (1 − α2m)e + αmr (63)

where (12) was utilised. To further facilitate the subsequent
analysis, N (y, ẏd, 0, 0, ÿd), N (y, ẏ, 0, 0, ÿd) and N (y, ẏ, e, 0, ÿd)

are added and subtracted to the right-hand side of (27) as
follows

Ñ = [N (y, ẏd, 0, 0, ÿd) − Nd(yd, ẏd, 0, 0, ÿd)]
+ [N (y, ẏ, 0, 0, ÿd) − N (y, ẏd, 0, 0, ÿd)]
+ [N (y, ẏ, e, 0, ÿd) − N (y, ẏ, 0, 0, ÿd)]
+ [N (y, ẏ, e, r, ÿd) − N (y, ẏ, e, 0, ÿd)] (64)

After applying the mean value theorem to each bracketed
term of (64), the following expression can be obtained

Ñ = ∂N (σ1, ẏd, 0, 0, ÿd)

∂σ1

∣∣∣∣
σ1=v1

(y − yd)

+ ∂N (y, σ2, 0, 0, ÿd)

∂σ2

∣∣∣∣
σ2=v2

(ẏ − ẏd)

+ ∂N (y, ẏ, σ3, 0, ÿd)

∂σ3

∣∣∣∣
σ3=v3

(e − 0)

+ ∂N (y, ẏ, e, σ4, ÿd)

∂σ4

∣∣∣∣
σ4=v4

(r − 0) (65)

where v1 ∈ (yd, y), v2 ∈ (ẏd, ẏ), v3 ∈ (e, 0) and v4 ∈ (r, 0).
The right-hand side of (65) can be upper bounded as follows

Ñ ≤
∣∣∣∣ ∂N (σ1, ẏd, 0, 0, ÿd)

∂σ1

∣∣∣∣
σ1=v1

∣∣∣∣ |e|

+
∣∣∣∣ ∂N (y, σ2, 0, 0, ÿd)

∂σ2

∣∣∣∣
σ2=v2

∣∣∣∣ |ė|

+
∣∣∣∣ ∂N (y, ẏ, σ3, 0, ÿd)

∂σ3

∣∣∣∣
σ3=v3

∣∣∣∣ |e|

+
∣∣∣∣ ∂N (y, ẏ, e, σ4, ÿd)

∂σ4

∣∣∣∣
σ4=v4

∣∣∣∣ |r| (66)

The partial derivatives in (66) can be calculated from (63) as

∂N (σ1, ẏd, 0, 0, ÿd)

∂σ1
= fL1 (67)

∂N (y, σ2, 0, 0, ÿd)

∂σ2
= fL2 (68)

∂N (y, ẏ, σ3, 0, ÿd)

∂σ3
= 1 − α2m (69)

∂N (y, ẏ, e, σ4, ÿd)

∂σ4
= αm (70)

where (10) was utilised and the functions fL1(σ1, ẏd) ∈ R and
fL2(y, σ2) ∈ R are defined as follows

fL1 � ∂FL(σ1, ẏd)

∂σ1
+ T 2

em

Cc
(71)

fL2 � ∂FL(y, σ2)

∂σ2
(72)

By noting that

v1 = y − c1(y − yd), v2 = ẏ − c2(ẏ − ẏd)

v3 = e − c3(e − 0), v4 = r − c4(r − 0)
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where ci ∈ (0, 1) ∀ i = 1, 2, . . . , 4. From Assumptions 1, 3
and 4, it is clear that an upper bound for the right-hand side
of (67)–(70) can be written as follows:

∣∣∣∣ ∂N (σ1, ẏd, 0, 0, ÿd)

∂σ1

∣∣∣∣
σ1=v1

∣∣∣∣ ≤ ρ1(|e|, |r|) (73)

∣∣∣∣ ∂N (y, σ2, 0, 0, ÿd)

∂σ2

∣∣∣∣
σ2=v2

∣∣∣∣ ≤ ρ2(|e|, |r|) (74)

∣∣∣∣ ∂N (y, ẏ, σ3, 0, ÿd)

∂σ3

∣∣∣∣
σ3=v3

∣∣∣∣ ≤ ρ3 (75)

∣∣∣∣ ∂N (y, ẏ, e, σ4, ÿd)

∂σ4

∣∣∣∣
σ4=v4

∣∣∣∣ ≤ ρ4 (76)

where ρ1(·) and ρ2(·) are positive, non-decreasing functions
of their arguments and ρ3 and ρ4 are positive constants. After
substituting (73)–(76) into (66), an upper bound for |Ñ (·)|
can be expressed as

|Ñ (·)| ≤ ρ1(‖z‖)|e| + ρ2(‖z‖)|ė| + ρ3|e| + ρ4|r| (77)

The expressions in (12) and (31) can now be used to upper
bound the right-hand side of (77) as in (30).
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