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Abstract| We present a low complexity approximate
method for semi-blind best linear unbiased estimation (BLUE)
of a channel impulse response vector (CIR) for a commu-
nication system which utilizes a periodically transmitted
training sequence, within a continuous stream of informa-
tion symbols. The algorithm achieves slightly degraded re-
sults at a much lower complexity than directly computing
the BLUE CIR estimate. In addition, the inverse matrix
required to invert the weighted normal equations to solve
the general least squares problem may be precomputed and
stored at the receiver. The BLUE estimate is obtained by
solving the general linear model, y =Ah+w+n, for h, where
w is correlated noise and the vector n is an AWGN process,
which is uncorrelated with w: The solution is given by the

Gauss-Marko® Theorem as h =
¡
ATC(h)¡1A

¢¡1
ATC(h)¡1y: In

the present work we propose a Taylor series approximation

for the function F (h) =
¡
ATC(h)¡1A

¢¡1
ATC(h)¡1y where,

F : RL ! RL for each ¯xed vector of received symbols,
y, and each ¯xed convolution matrix of known transmitted
training symbols, A:We describe the full Taylor formula for
this function, F (h) = F (hid)+

P
j®j¸1 (h¡hid)

® (@=@h)® F (hid)

and describe algorithms using, respectively, ¯rst, second and
third order approximations. The algorithms give better per-
formance than correlation channel estimates and previous
approximations used, [15], at only a slight increase in com-
plexity. The linearization procedure used is similar to that
used in the linearization to obtain the extended Kalman
¯lter, and the higher order approximations are similar to
those used in obtaining higher order Kalman ¯lter approxi-
mations, [7]

Keywords|Channel estimation, BLUE, best linear unbi-
ased estimation, general linear model, Taylor series approx-
imation, linearization, Gauss Marko® Theorem.

I. Introduction

Reliable communication often requires accurate estima-
tion of the channel impulse response (CIR) to facilitate
channel equalization. Semi-blind algorithms exploit infor-
mation used by blind methods (for example, the statistics
of the unknown data symbols) as well as information from
known training symbols. For general references on blind
and semiblind channel estimation, see [8]. Several recent
papers consider di®erent aspects of semi-blind channel es-
timation. Notably [6], [13], [12], and [4]. In [17] and [18]
we devised a semi-blind iterative algorithm to construct
the best linear unbiased estimate (BLUE) of the channel,
which is given by the Gauss-Marko® Theorem ([10] or [14])

as
hBLUE =

¡
AT C(h)¡1A

¢¡1
ATC (h)¡1y (1)

in the case where we have the general linear model for the
received data, i.e. where the noise is not white, since we
consider correlated noise due to unknown data, where, in
our case, the noise is correlated due to convolution with the
CIR. For each ¯xed matrix of training data, A, and each
vector of received values, y, we de¯ne the function

F (h) = Fy;A (h) =
¡
ATC (h)¡1A

¢¡1
AT C(h)¡1y (2)

In [15] and [16] an approximate version of the iterative
algorithm of [17] and [18] is described. In the present work
we propose a more general framework, within which the
approximation given in [15] and [16], would be the zeroeth
order Taylor series approximation of the function F (h), i.e.
a constant approximation, F (hid), to the function F (h).
We consider the real part of the received data, denoted
as vector y, and the real part of the CIR vector, denoted
as h. We use the vector-valued function of a real vector
variable version of the Taylor series, [3], to develop a series
approximation to the function F (h) which gives the BLUE
estimate for h, as given in (1). Note that although our
proposed algorithm does not ¯t within a Kalman ¯ltering
framework the process of linearization used in deriving the
extended Kalman ¯lter (EKF) is similar to that which we
propose here, and the higher order approximations which
we use are similar to those used in obtaining higher order
Kalman ¯lter approximations, [7]. In fact, the use of the
Taylor series is a standard tool of approximation, see, for
example, [5], [9], and [19] to see instances of its use. We
describe the full Taylor formula for this function, (where
h = [h1; :::; hL]

T ; hid = [hid1 ; :::; h
id
L ]
T and ® is a multi-

index, where for ® = [0; :::;0; 1|{z}
ith

; 0; :::; 0]T , (h ¡ hid)
®
=

(hi ¡ h
id
i ))

F (h) = F (hid) +
X
j®j¸1

(h¡ hid)
® (@=@h)® F (hid ) (3)

and use either a ¯rst (denoted r1F (hid)) or second (de-
noted r2F (hid)) order approximation,

F (h) ¼ r1F (hid) ´ F (hid) + (hi ¡ h
id

i ) (@=@hi) F (hid)
(4)
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F (h) ¼ r2F (hid ) ´ F (hid) + (5)

(hi ¡ hidi ) (@=@hi)F (hid) + (6)

(hi ¡ hidi )
2 ¡
@2=@h2i

¢
F (hid) (7)

II. Baseband Data Transmission Model

The baseband symbol rate sampled receiver pulse-
matched ¯lter output is given by

y[n] ´ y(t)jt=nT =
X
k

Ikh[n ¡ k ] + º[n]; (8)

=
X
k

Ikh[n ¡ k] +
X
k

´[k]q¤ [¡n + k] (9)

where Ik 2 f®1; :::; ®M g ½ C is the M-ary complex valued
training sequence; fakg denotes the ¯rst N known (train-
ing) symbols within a frame of length N 0 and fdkg denotes
the remaining N 0 ¡ N random data within the frame;
º (t) = ´(t) ¤ q¤(¡t) denotes the complex (colored) noise
process at the output of the receiver (pulse) matched ¯lter,
with ´(t) being a zero-mean white Gaussian noise process
with spectral density ¾2´ per real and imaginary part; h(t)
is the complex valued impulse response of the composite
dynamic channel, including the pulse shaping transmit ¯l-
ter q(t), the physical channel impulse response c(t), and
the receive ¯lter q¤(¡t) and is given by

h(t) = p(t) ¤ c(t) =

LX
k=¡K

ckp(t ¡ ¿ k), (10)

and p(t) = q(t) ¤ q¤(¡t) is the convolution of the trans-
mit and receive ¯lters, where q(t) has a ¯nite support
of [¡Tq=2; Tq=2], and the span of the transmit and re-
ceive ¯lters, Tq , is an integer multiple of the symbol pe-
riod, T ; that is Tq = NqT = 2Lq , Nq 2 Z+ . fckg ½
C denote the complex valued physical channel gains,
and f¿kg denote the multipath delays, or the Time-Of-
Arrivals (TOA). We also note that for the 8-VSB sys-
tem, the transmitter pulse shape is the Hermitian sym-
metric root raised cosine pulse, which implies that q(t) =
q¤(¡t). In the sequel, we will denote both the trans-
mit and receive ¯lters by q [n] ´ q(t)jt=nT : Also the sam-
pled matched ¯lter output signal, y[n], will be used ex-
tensively in vector form, and so we introduce the nota-
tion y[n1:n2] = [y[n1]; :::; y[n2]]

T 2 Rn2¡n1+1. Similarly

´[n1:n2] = [´[n1]; :::; ´[n2]]
T 2 Rn2¡n1+1 and º [n1 :n2] =

[º [n1]; :::; º[n2]]
T 2 Rn2¡n1+1.

Without loss of generality, the symbol rate sampled,
complex valued composite CIR, h[n], can be written as
a ¯nite dimensional vector

h = [h[¡Na]; :::; h[¡1]; h[0]; h[1]; :::; h[Nc ]]
T

where Na and Nc denote the number of anticausal and
causal taps respectively. Based on (8), and assuming that
N ¸ (Na +Nc + 1), we can write the pulse matched ¯lter

output corresponding only to the known training symbols
compactly, in vector notation, as,

y[Nc:N¡Na¡1] = eAh + º[Nc:N¡Na¡1]
= eAh + eQ´[Nc¡Lq:N¡Na¡1+Lq]

where eA = T
n
[aNn+Na; :::; aN¡1]

T
; [aNn+Na ; :::; a0]

o
is

the (N ¡ Na ¡Nc) £ (Na + Nc + 1) Toeplitz convolution

matrix with ¯rst column [aNn+Na ; :::; aN¡1]
T
and ¯rst row

[aNn+Na ; :::; a0] and º[Nc:N¡Na¡1] =
eQ´[Nc¡Lq:N¡Na¡1+Lq]

is the colored noise at the receiver matched ¯lter
output, where eQ = T

n
[q0; 0; :::; 0]

T
;
£
qT ; 0; :::; 0

¤o
2

R(N¡Na¡Nc)£(N¡Na¡Nc+Nq) and

qT = [q[+Lq ]; :::; q[0]; :::; q [¡Lq ]] 2 R
2Lq+1

where q denotes the symbol rate sampled receiver pulse
matched ¯lter.

Similarly, we can write the pulse matched ¯lter output
which includes all the contributions from the known train-
ing symbols (including output which includes contributions
from adjacent unknown random data) as

y[¡Na:N+Nc¡1] = (A +D) h+ º[¡Na:N+Nc¡1] (11)

= Ah+Dh+ Q´[¡Na¡Lq :N+Nc¡1+Lq]

where A = Tf[a0; :::; aN¡1; 0; :::; 0| {z }
Na+Nc

]T ; [a0; 0; :::;0| {z }
Na+Nc

]g is the

(N + Na +Nc)£ (Na +Nc + 1) Toeplitz matrix with ¯rst
column [a0; :::; aN¡1; 0; :::;0]

T and ¯rst row [a0; 0; :::; 0] and
D = T f[0; :::; 0| {z }

N

; dN ; :::; dNa+Nc+N¡1]
T ; [0; d¡1; :::; d¡Na¡Nc| {z }

previous frame data

]g

is a Toeplitz matrix which includes adjacent random in-
frormation symbols only, both prior to the training se-
quence and after the training sequence. We shall only
use the statistics of this random data, (since the ac-
tual values are unknown) and use these statistics to com-
pute the covariance matrix of the correlated noise, to be
used in the solution for the BLUE estimate of h. The
data symbols d¡1; :::; d¡Na¡Nc denote the unknown infor-
mation symbols transmitted at the end of the previous
frame. º [¡Na:N+Nc¡1] = Q´[¡Na¡Lq :N+Nc¡1+Lq]

is the
colored noise at the receiver matched ¯lter output, where
Q 2 R(N+Na+Nc)£(N+Na+Nc+Nq) is de¯ned similarly to eQ.
To compute the covariance matrix for the noise contribu-
tion, Dh +Q´[¡Na¡Lq:N+Nc¡1+Lq] , to the received vector
y[¡Na:N+Nc¡1], it is advantageous to rewrite the term Dh.

We de¯ne d 2 RN+2(Nc+Na) by

d = [d¡Nc¡Na ; :::; d¡1; 01£N ; dN ; :::; dN+Nc+Na¡1]
T

and H = H(h) = T f[h[¡Na]; 0; :::; 0]; [h
T
; 0; :::;0]Tg 2

R(N+Na+Nc)£(N+2(Nc+Na))is the Toeplitz channel convo-
lution matrix where

h
T
= [h[Nc]; :::;h[1]; h[0]; h[¡1]; :::; h[¡Na]] 2 R

Nc+Na+1
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is the time-reversal of the channel vector, hT . Then, we

note that Dh = Hd and E
h
Hd (Hd)

T
i
= ¾2dHSH

T where

E
£
ddT

¤
= ¾2dS and S 2 R(N+2(Nc+Na))£(N+2(Nc+Na)) is

given by

S =

24 I(Nc+Na) 0(Nc+Na)£N 0(Nc+Na)

0N£(Nc+Na) 0N 0N£(Nc+Na)

0(Nc+Na) 0(Nc+Na)£N I(Nc+Na)

35 (12)

Since Dh = Hd, then we may rewrite (11) as

y[¡Na:N+Nc¡1] = Ah+Hd+Q´[¡Na¡Lq:N+Nc¡1+Lq ]
(13)

Hence,

C = C (h) (14)

= V ar(Hd +Q´[¡Na¡Lq:N+Nc¡1+Lq]
) (15)

= ¾2dHSH
T + ¾2´QQ

T (16)

III. Problem Description and Previous Work

The solution of the general linear model, (13), is given
by the Gauss-Marko® Theorem as

h =
¡
AT C(h)¡1A

¢¡1
ATC (h)¡1y (17)

where C(h) is given by (14). We note that in solving (17)
we are looking for a ¯xed point, denoted by h0, of the map-
ping h 7¡! F (h) where, for each ¯xed vector of received
symbols, y, and each ¯xed convolution matrix of known
transmitted training symbols, A, then F : RL ! RL is
given by (2).
Our own previous approaches to ¯nding the semi-blind

BLUE channel estimate have encompassed:
Case (1): In [17] and [18] an initial thresholded approx-

imation, denoted h(0), to h was obtained via correlation of
the training sequence with a stored copy of the training
sequence at the receiver. Then the iteration

h(k+1) =
³
ATC (h(k))¡1A

´¡1
AT C(h(k))¡1y; k = 0;1; 2; :::

was used to generate a sequence of approximations to
the ¯xed point, hBLUE . Numerical simulations indicated
that two or three iterations were su±cient for an error
of
°°h(k) ¡ hBLUE°° » 10¡6 (here h 2 R512:) Theoreti-

cally convergence of this iteraton to the unique ¯xed point,
hBLUE , of the function F (h) = Fy;A (h) is guaranteed if
kJF (h)k < 1 where JF (h) denotes the Jacobian matrix of
F , [18].
Case (2): In [15] and [16], an approximate linear sys-

tem was derived to give an approximate solution to (17).
This approximate linear system was derived by replac-
ing C(h) on the right-hand side of (17) by C(hid) where
hid = [0; :::;0; 1; 0; :::; 0]

T 2 RL where the 1 appears in the
64th position in our case, to correspond to the position of
the cursor in the decision feedback equalizer (DFE) which
we use. This approach has the added advantage that the

matrix
¡
ATC (hid)

¡1A
¢¡1

AT C(hid)
¡1 may be computed

o²ine and stored at the receiver.

In the present work, we take the point of view that we
may expand the vector-valued function F (h) = Fy;A (h) =¡
ATC (h)¡1A

¢¡1
ATC(h)¡1y of the vector variable, h, us-

ing Taylor's Formula, [3], [11] about a ¯xed \ideal" vector,
hid . The approximation to Fy;A (h) given by Fy;A (hid)
in Case (2), above, is the zeroeth order Taylor approxi-
mation. We then derive explicitly ¯rst, second, and third
order Taylor approximations to the BLUE CIR estimate.
The methods are attractive, since computation of the ma-
trices involved may be done o²ine and stored at the re-
ceiver. The only processing which will be needed at the
reciever is that of computing (hi ¡h

id
i ), where hi is the i

th

entry of the approximate channel vector obtained by corre-
lation, and hidi = 1, if we use hid = [0; :::; 0; 1|{z}

ith

; 0; :::; 0]T ,

and then to form the matrices used in obtaining the vectors
given in (4) and (5).

IV. Derivation of the Approximations r1F (hid)
and r2F (hid)

We de¯ne the matrix

AC (h) =
¡
ATC(h)¡1A

¢¡1
AT C(h)¡1 2 RL£(N+L¡1):

(18)
Then F : RL ! RL de¯ned by F : h 7! F (h) in (2) is given
by

F (h) = AC (h) y 2 R
L:

We state the following Propositions, and give brief proofs.

Proposition 1: For any matrix B = B (h) 2 Rn£n which
depends on a vector parameter h = [h1; :::; hK ] 2 R

K such
that there exists an open set U ½ RK , such that B is
nonsingular and di®erentiable on U , then, we have that for
any i, 1 · i · K; and for any h 2 U ,

@B (h)¡1

@hi
= ¡B (h)¡1

@B (h)

@hi
B (h)¡1 (19)

Proof: Di®erentiate with respect to hi both sides of the
identity B (h)¡1B (h) = I , using the product rule.¥

Proposition 2: For 1 · i · L, we have

@F (h)

@hi
= AC (h)

@C (h)

@hi
C(h)¡1 fAAC (h)¡ Ig y (20)

Proof: Di®erentiate, using the product rule, with respect
to hi, the expression for AC (h) y and use Proposition 1
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three times. That is, we have,

@F (h)

@hi
=

@

@hi

³¡
ATC (h)¡1A

¢¡1´
AT C(h)¡1y

+
¡
ATC (h)¡1A

¢¡1
AT

@

@hi

¡
C (h)¡1

¢
y

=
¡
ATC(h)¡1A

¢¡1
AT C(h)¡1 £

£

µ
@

@hi
C(h)

¶
C (h)¡1A

¡
AT C(h)¡1A

¢¡1
£

£ATC (h)¡1y

¡
¡
ATC (h)¡1A

¢¡1
ATC(h)¡1 £

£

µ
@

@hi
C(h)

¶
C (h)¡1y

which gives the result.¥
Proposition 3: For 1 · i; j · L , we have

@2F (h)

@hi@hj
=

½
@AC (h)

@hj

@C (h)

@hi
+ AC (h)

·
@2C (h)

@hi@hj
¡(21)

@C (h)

@hi
C(h)¡1

@C (h)

@hj

¸¾
£ (22)

£C (h)¡1 fAAC (h)¡ Ig y + (23)

AC (h)
@C (h)

@hi
C(h)¡1

½
A
@AC (h)

@hj

¾
y

Proof: Di®erentiate (20) with respect to hj, using the
product rule and employing Proposition 1. We omit the
details.¥
We omit the expression for the third derivatives, but it

is straightforward to compute from (21) above.
Proposition 4: For 1 · i · L, we have

@C (h)

@hi
= ¾2dH (h) S

Ã
@H (h)T

@hi

!
+¾2d

µ
@H (h)

@hi

¶
SH (h)T

(24)
Proof: Di®erentiating (14) with repect to hi gives the

required result.¥
Proposition 5: For 1 · i; j · L , we have

@2C (h)

@hi@hj
= ¾2d

µ
@H (h)

@hj

¶
S

Ã
@H (h)

T

@hi

!
+ (25)

¾2d

µ
@H (h)

@hi

¶
S

Ã
@H (h)

T

@hj

!
(26)

Proof: Di®erentiating (24) with repect to hj , and noting

that @2H (h)
T
=@hi@hj = 0 for any i; j, gives the required

result.¥
Proposition 6: For all derivatives of order 3 and higher,

we have
¡
@
@h

¢®
C (h) ´ 0(N+L¡1)£(N+L¡1) 8 ®; j®j ¸ 3

Proof: Di®erentiating (25) with repect to hk , and noting

that @2H (h)
T
=@hi@hj = 0 for any i; j, gives the required

result.¥
We use approximations (4) and (5) where we do not use

a full linear approximation, including all terms in the linear

Taylor series approximation. We only use a linear approx-
imation using the dominant term, which for us is a linear
approximation where we have di®erentiated with respect
to the main tap weight. This approach is supported by the
simulation results where the best results are obtained in
this case. This has the added advantage of reducing the
complexity since only a single term is used in the approx-
imation. A similar comment holds for both the quadratic
and cubic approximations, where we do not use the full sec-
ond and third order Taylor series approximations, but only
use a single second order term and a single third order term
in the second and third order approximations.

V. Algorithm

A. Input:

Received vector y;
Training sequence to form data matrix A

B. Stored at Receiver:

Zeroeth order approximation matrix (see (18))

AC (hid) =
¡
AT C(hid)

¡1A
¢¡1

ATC (hid)
¡1 2 RL£(N+L¡1)

(27)
First order approximation matrix 2 RL£(N+L¡1) for ¯rst

order algorithm (see (20) and note that @F (h)
@hi

= @AC(hid)
@hi

y)

@AC (hid)

@hi
= AC (hid )

@C (hid)

@hi
C(hid)

¡1 £ (28)

£fAAC (hid )¡ Ig (29)

Second Order approximation matrix 2 RL£(N+L¡1); if
second order algorithm is used (see (21) and note that
@2F (h)
@hi@hj

= @2AC(h)
@hi@hj

y)

@2AC (hid)

@h2i
=

½
@AC (hid )

@hi

@C (hid)

@hi
(30)

+AC (hid )

·
@2C (hid)

@h2i
¡ (31)

@C (hid)

@hi
C (hid)

¡1@C (hid )

@hi

¸¾
£(32)

£C(hid)
¡1 fAAC (hid)¡ Ig (33)

+AC (hid )
@C (hid)

@hi
C(hid)

¡1 £

£

½
A
@AC (hid)

@hi

¾
(34)

2 RL£(N+L¡1) (35)

Third order approximation matrix if third order algorithm
is used (not given here.)

C. Real-Time Processing

Let hcorr = [h
corr
1 ; hcorr2 ; :::; hcorrL ]T 2 RL denote the cor-

relation approximation to the channel which is available
from timing acquisition. Then compute the scalar value

2211



hcorri ¡ hidi = hcorri ¡ 1 when the ideal channel used is
hid = [0; :::; 0; 1|{z}

ith position

; 0; :::; 0]T 2 RL: Use this, together

with (27) and (28), to form the matrix¡
r1AC

¢
(hid) = AC (hid) +

¡
hcorri ¡ hidi

¢ @AC (hid)
@hi

(36)

to be used in the ¯rst order algorithm. (Complexity
is L £ (N + L ¡ 1) multiplications and L £ (N + L ¡ 1)
additions.) Similarly, using (27), (28) and (30), form the
matrix¡
r2AC

¢
(hid) = AC (hid ) +

¡
hcorri ¡ hidi

¢ @AC (hid)
@hi

+(37)

¡
hcorri ¡ hidi

¢2 @2AC (hid)
@h2i

(Complexity is 2 £ L £ (N + L ¡ 1) multiplications and
2 £ L £ (N + L ¡ 1) additions.) We omit the third order
approximation matrix in the interests of space.

C.1 Compute the approximations to hBLUE

r0F (hid) =
¡
r0AC (hid)

¢
y zeroeth order approximation,

identical to that in [15] and [16]

r1F (hid) =
¡
r1AC (hid)

¢
y ¯rst order approximation

using (36)

r2F (hid) =
¡
r2AC (hid)

¢
y second order approximation

using (37)

r3F (hid) =
¡
r3AC (hid)

¢
y third order approximation,

not explicitly given here

(Each takes (N+Na+Nc)£ (Na+Nc+1) multiplications.)

VI. Simulation Results

Simulation results are shown in Figure 1 (where

N ormalized Least Squares Error =
°°°h ¡ bh°°°2 =(Na +

Nc + 1) khk
2
where bh is the channel estimate) for Brazil-

ian channel D which appears in the HDTV literature, [1],
at 18,20,22,24,26,28 dB input SNR for the zeroeth, ¯rst,
second and third order approximations.
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