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Abstract-This paper tackles the NP-complete problem of programming for finding an initial solution and try various
academic class scheduling (or timetabling). The aim is to find a neighborhood search algorithms. The comparison results are
feasible timetable for the department of computer engineering demonstrated in section IV and related work is given in section
in Izmir Institute of Technology. The approach focuses on V. Finally, we conclude the paper in section VI.
simulated annealing. We compare the performance of various
neighborhood searching algorithms based on so-called simnple
search, swapping, simple search-swapping and their combinations, II. COURSE SCHEDULING PROBLEM
taking into account the execution times and the final costs. The
most satisfactory timetable is achieved with the combination of Inte Department of computrngineen oerfzmerIt
all these three algorithms. The results highlight the efficacy of tute of Technology, course scheduling has been performed by
the proposed scheme. the senior staff members manually so far. However, solving

the course scheduling problem by hand usually might fail to

Keywords - coarse scheduling sirnulated annealing, neigh- satisfy all the constraints. According to the definition of course
borhood searching scheduling, in order to obtain an appropriate solution, all hard

constraints have to be satisfied, while trying to fulfill as many
I. INTRODUCTION soft constraints as possible. As a case study, 2007 - 2008

Fall Semester is handled. This problem consists of 5 classes
ThemonUroblemthatalmosteveryuniversityCoursesTim Poiso (including postgraduate classes) with 5 classrooms and a

common problefm that almost every university has to solve, shared laboratory. In this case, any constraint related with
The basic defilnitiont states that UCTP is a task of assiglnring the casom sinrdsc saaiyo h om rro
events of a university (lectures, activities, etc) to the various alability, inoee huclashasaits ow clasroomi omputer' ' ~~~~~~~availablity, sinLce each class has its own classroolm inL colmputerresources such as lecturers, classrooms and time slots. This
is done by minimizing the violations of a predefined set of 8 ineestructors in this casTotaly tereuae durations cag change
contlstraints. Intl other words no teachern tno class or no roochngchonstraints rworethanords, in tanher,on ornom oo between 3 and 5, but the lectures that take 5 time slots are

should appearsomorthan onetablinga perioblemsdeofctime.in divided as 3 slots for theoretical and 2 slots for laboratory
Therere e as erltimetimgprblems scribedbinth lectures. Hence, the laboratory lessons are considered as a

literature such as exaimination timetabling, schooltimsetabling, separate lesson of which duration is 2 time slots and they are
employee tilmetabling, etc.. All these problems share silmilar assigned to the laboratory. There can be lmaximum 8 timLe slots
characteristics and they are similarly difficult to solve. The for one day in the university, i.e., there are 40 tiimeslots per
general university course timetabling problem is known to be we By in th ese itin,th e hard co ts

NP-complete, as many of the subproblems are associated with can be constructed as follows:
additional constraints.

The intention of this paper is to study course timetabling Ci : Each instructor can take only one class at a time.
X . ~~~~~~C2:ClLashes mnust not occur betweeln the Ic tulres for:with special emphasis on department-based timetabling as a stes of on class.

classical application area where various types of preferences
needtod toot C3: If any instructor has some requests that have to beneed to be satisfiedtoobtainafeasiblesolution.Thus,itsatisfied, their demands must be fulfilled.focused on the solution techniques for course timetabling of C4n
Izmir Institute of Technology Computer Engineering Depart- Ianymclass ha tottak l res fromothe

ment. ~~~~~~~~~~~~~~~~partlmelnts,the time slots that are given from thosement. ~~~~~~~~~~~~~~~~~~departlmelntslmust be alklowed to those lectulres.In the following section, the course scheduling problem in
the unliversity S presentedt. Tlis iS d"one in two steps: We first C5 All lectures must start and finish in the same day.

descrie the roble, thengive sme fomal deinitios. In The o efwt onsct1raintsJ taelnin rto account aire:
section III, Simulated Annealing (SA) method is presented. C6: The number of alternatives that students can attend
Our approach is maainlLy based oln SA, yet the performaance of should be maaximized.
SA highly rely onL the inLitialL solution, nleighborhood search and C7: The student conflicts betweenl lectures should be
cooling process, as described in section II. We use constrain minimized.
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C8: Friday should be free for all classes. Furthermore, the number of violated soft constraints are tried
Cg: Preferences of instructors should be fulfilled. to be minimized.

The model of the case study problem is modeled according III. SIMULATED ANNEALING METHOD
to the definition of constraint satisfaction problem. A con- The application of Simulated Annealing (SA) to the
straint satisfaction problem is a triple (Z, D, C) where Z is a timetabling problem is relatively straight forward. The par-
finite set of variables {1X, X2 ?...** }, D is a function which ticles are replaced by elements. The system energy can be
maps every variable in Z to a set of objects of arbitrary type, defined by the timetable cost for timetable modeling. An initial
i.e., D Z -* finite set of objects (of any type). Dx,, the allocation is made in which elements are placed in a randomly
domain of xi, is taken as the set of objects mapped from xi chosen period. The initial cost and an initial temperature
by D. These objects are called possible values of xi and the are computed. To determine the quality of the solution, the
set DxiI C is a finite (possibly empty) set of constraints on an cost has a critical role in the algorithm just as the system
arbitrary subset of variables in Z. In other words, C is a set of energy role in the quality of a particle being annealed. The
sets of compound labels. Because course scheduling problem temperature is used to control the probability of an increase
is a real life problem which has plenty of constraints, it is in cost and can be likened by the temperature of a physical
categorized under the optimization problem. Hence the triple particle [3].
definition of the constraint satisfaction problem (denoted by The change in cost is the difference of two costs; one of
W) becomes quadruple (Z, D, C, F) where F is the objective them is the first cost that is before the perturbation and the
function that indicates the quality of the solution. Formally, second one is the cost after the randomly chosen element is
we denote with cs(P) the solution of P by any constraint changed of an activity. The element is moved if the change in
satisfaction method [1]. Similarly, we use sa(P) to denote the cost is accepted, either because it lowers the system cost, or
solution of P by simulated annealing. the increase is allowed at the current temperature. According

Starting from a good point for searching a feasible solution to the timetabling problem model, the cost of removing an
is a very critical step in simulated annealing. We use constraint element usually consists of a class cost, an instructor cost and
satisfaction methods for an initial timetable satisfying all the a room cost.
hard constraints and some of the soft constraints. Subsequently SA is an iterative method and a typical SA algorithm accepts
for fine tuning, we use simulated annealing in order to opti- a new solution if its cost is lower than the cost of the current
mize a given objective function, F. This optimization allows solution in each iteration. Even if the cost of the new solution
us to take into account the soft constraints more effectively. is greater, there is a probability of this solution to be accepted.

With this acceptance criterion it is then possible to climb out
The model consists of a set of resources and a set of activ-..

ities. The time slots can be assigned a constraint, either hard of a local minima. The SA algorithm we use, denoted with
or soft; a hard constraint indicates that the slot is forbidden sa(P), can be seen in Fig. 1 [4].
for any activity, a soft constraint indicates that the slot is not Find a random initial solution s := so using cs(P)
preferred. These constraints are called as time preferences. Select an initial temperature t := to > 0
Time preferences can be assigned to each activity and each Select a temperature reduction function ai
resource, which indicate forbidden and non preferable time repeat
slots [2]. The lectures are called activities in the timetabling repeat

.. . . . 1 ~~~~~~~~s:=NeighborhoodSeatrchintg(s)model. Every activity is defined by its duration (expressed as d :=gF(s')- F(s)
a number of time slots), by time preferences, and by a set of if((d < 0) or (exp(-8/t) < rand[0, 1]))
resources. Activities require these set of resources. Resources s
also can be described by time preferences. Only one activity endif
can use a resource at any time. Each resource can represent until iterationcount - ip
a teacher, a class, a classroom, or another special resource. until stopping condition is true
The solution of the problem defined by the above model is a
timetable where every scheduled activity has its assigned start F,ig. 1. Pseudo-code of the SA algorithm
time and a set of reserved resources needed for its execution.
This timetable must satisfy all the hard constraints. According One should note that several aspects of the SA algorithm are
to this structure; problem oriented. In the design of a good annealing algorithm,

deciding about proper neighborhood structure, cost function
1) Every scheduled activity has all the required resources and cooling schedule are of paramount importance. We only

reserved. focus on neighborhood searching in this context.
2) Two scheduled activities cannot use the same resource

atthe sme time A. Neighborhood Seatrching
3) No activity is scheduled into a timne slot where the Inl order to implement the SA algorithlm a neighborhood

activity or some of its reserved resources has ahard structure must be defined. This is the ke colmponent ofveeueaaay pe any
colnstrailnt iln the time preferelnces. simulated alnnealLing lmethod. Iln this study, three algorithms
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are handled in different combinations. In each iteration of the 1) If the activity slots are hard slots that violate the hard
algorithm, neighborhood searching is performed once to find constraints of that activity;
out the next possible solution set. More explicitly, we utilize n
the following algorithms: Fc:.WITg (I)

1) Simple Searching Neighborhood (SSN): The first one i=
of the neighbor algorithm is simple searching neighbor- where n is the number of activities, w1 is the weight
hood. It randomly chooses one activity and one slot. The and Ti is the number of time slots which are forbidden
chosen slot is assigned as the start time of the selected to the activities.
activity (see Fig. 2). Please note that Slot(ac) depicts 2) If the same instructor is assigned to two activities at the
the starting slot of activity ac. same time;

2) Swapping Neighborhoods (SWN): The second algo- n-1 n
rithm selects randomly two activities and swaps their Fc2 = w2 lE ij (2)
start times (see Fig. 3). i= 1j=i+

3) Simple Searching and Swapping Neighborhoods where n is the number of activities, W2 is the weight,
(S3WN): This neighborhood searching algorithm I is the number of instructors who give two lectures,
chooses randomly two activities and two slots. These i
two slots are assigned as the start times of the randomly t ame lt atthe same

selected activitie (see in Fig. 4).3) If the samne class iS assignled to two activities at the salmeselected activities (see in Fig. 4). time;
n-1 n

SSN() Fc= w3Z Cpj, (3)
{ ac := select-random-activity() +i= ji

slL: selLect-ranLdom timre-slLot )...
Slot(ac):=selec;randomim t where n is the number of activities, w3 is the weight,

} Cij is the number of classes which are given to two

Fig. 2. Pseudo-code of the SSN algorithm used in neighborhood searching. lectures, i and j, at the same time.
4) If the activity slots are separated into two days. (Each

activity must start and finish in the same day).
12

SWN() Fc4 =w4 LXi, (4)
{ acl := selectLrandom-activityl 0

ac2 := selectrandom-activity2(;
sl := Slot(acl); where n is the number of activities, Xi is the number
Slot(acl) := Slot(ac2); of time slots which are given to lectures i, it is a
Slot(ac2) := sl; boolean variable which becomes true when the course

is separated into two days and W4 is the weight.
Fig. 3. Pseudo-code of the SWN algorithm used in neighborhood searching. The conditions that the timetable has penalties for soft

constraints are:
5) If the activity slots are soft slots that violates the soft

S3 constraints of which activitySWN() Y

{ acl := select-random-activityl() n

ac2 := select-random-activity2(; Fc W5 LYi, (5)
sll := select-random-time-slotl (;
s12 :=select_randolm_timle_s1ot2(),
Slot(acl) rmssll; where n is the number of activities, Yi is the number of
Slot(ac2) := s12; time slots which depends on preferences of instructors

} aand W5 is the weight. It can be inferred soft slots either.
Fig. 4. Pseudo-code of the S3WN algorithm used in neighborhood searching. 6) If there is any student conflict between the previously

failed lectures that a student has to take, and the regular
lectures that are yet to be taken.

n-1 n

B. Cost Calculation Fc6 W6 ........'C.......Sij,(61J. WVa , ,6 ilUM&aaCt eC6 = WG ~~~~~~ ~ ~~~~~LL(6St)

For the case of course scheduling, the cost calculation tries i=1 j=i+l
to show the influences of both the hard constraints and soft where n is the number of activities, S4i is the number
constraints. Penalty scores of both the hard constraints anrd soft of studelnts who take two lectures of differenrt classes, ?
conlstrainlts are presented below. Each conlstraint is definled by anld j, at the same tilme. If a student follows anl irregular
a penalty score ftunction. Thle conditions thlat thle timetable has programL, th leecture conflicts are minilmized by th1IS
pelnalties for hard colnstrailnts are: colnstrailnt. It is takeln as a soft colnstrailnt, otherwise
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TABLE I
course scheduling problems would be very strict and THE EFFECT OF Nmove ON COSTS AND EXECUTION TIMES
had no solution.

To determine the student conflicts, all the information about Nmo66 10 50 100 500 1000 3000
the students and lectures are collected from the university's Execution
database system so that any irregular situation can be identi- time (sec) 0.8 3 6 29 60 154

Cost 2018800. 4100 3500 3300 340 330fied. For instance, if a third year standing student has some
unsatisfied courses from the second year, which conflict with
the third year courses, these conflicts should be avoided. different neighborhood searching algorithms are demonstrated.

For hard constraints, the given penalties (w) must be very First, Table II ompare three different algorithms presented
high, e.g., approximately oc. For soft constraints, penalties can in the previous sections, namely SSN, SWN and S3WN.
be chosen smaller, taking into account the priorities of the

constraints Thrfr,tecs .ucto a ecluae According to the table, SSN provides the best result. Sinceonstrainetsu Tf th e costf onsFran becu SA is a heuristic method, several experiments should be

sodone and the technique that returns the best result in an
F = Fc0 + FC2 + FC3 + FC4 + FC5 + FC6 (7) appropriate time should be chosen. Table III and IV show

C. Cooling Schedule an hybrid approach. The former one considers three pairs
in combination, i.e., SSN - SWN, SWN - S3WN and

We use geometric cooling schedule as the cooling function. SSN-S3WN. The latter shows the case that three algorithms
In every nre,p iterations, the next temperature is found by are used all together. This consists of two cases, A and B.

t := ozt (8) In case A, all algorithms are executed sequentially in each
iteration. In case B, they are executed in turn basis, which

where oa is the reduction parameter for geometric cooling and turns the best result among all these trials. Finally, in Fig. IV,
calculated as,

TABLE II
ca = 1 - (lnI(t) - lt(tf))/Nmove (9) Ct)STS ANI) EXECUTION TIM:ES WITH THRLE NEIGHIORHOOD SEARCH

where t is the current temperature, tf is the final temperature ALGORITHMS.

and Nmo,e is a fixed value that affects the duration of the SSN SWN S WN
temperature decrease. The parameter of n,,p is chosen as Cost CPU(se) Cost CPU(sec) Cost CPU(sec)
3, which returns the best solution cost within an acceptable 3900 29 9300 40 4300 34
execution time. To determine n,,p, several different values
such as 1, 2, 3, 5, 6 and 10 are experimented. A rough initial
temperature to is assigned 10000. This temperature is hot TABLE III
enough to allow moves to almost every neighborhood state, COSTS ANI) EXECUTION TIME S WITH THE C)MBINATIIONS OF SN, SWN
and the SA algorithm iteratively updates the temperature using AND S3WN.
the functional dependence between the starting acceptance SSN and SWN SSN and S3WN SWN and S3WN
probability Xo (60% to 70%) and the starting temperature to. Cost CPU(se) Cost CPU(see) Cost CPU(sec)
This functional dependence is as follows: 3900 28 4900 27 3700 31

Xo Xd,dndXi
Xo = X (61, ( rn, 7n+1, * m* ,(1 to)

n TABLE IV
1_/m exp(-Si/to) + (m, - r)/rt (1) C()STS AND EXECUTItON TIMES WHEN SSN, SWN AND S3WN ARE USEI)

i=l1 ALL TOGETHER.
where 6i = F(si) - F(so), so is the initial solution, si
is a neighbor solution of so, F is the cost function, m is Case A (sequentially) Case B (in turn)

' ? ~~~~~~~~~~CostCPU(see) Cost CPU(sec)the size of neighbor solution space. Initial temperature to is 4100 87.360 28
derived from the starting acceptance probability Xo using the
algorithm presented in [4]. For instance, in our settings, to is the cost chalnge durilng thLe alnnealilng (iln case B) iS ilustrated,calculated as 5000. This algorithm has to be run only once In the first phase, the initial cost obtained by cs( ) is 17600.before executing the SA algorithm, After the annealing, the cost achieves its final value of 3600.

IV. EXPERIMENTAL RESULTS
In the experiments, we mainly focus on the comparisons V. RELATED WORK

of the neighborhood search algorithms. First, one can see Timetabling problem has been worked on over the years,
the effect of Nm006 oln the totall executioln timne of the SA so that mnany differelnt solLutiolns have beeln proposed. Precise
algorithm and the fnal cost in Table I. In the rest of the and heuristic solution approaches for the school and university
tablLes, we use Nm006 500 silnce it gives the mnost satisfactory timnetablLing problemn have beeln studied sinlce the 1960s [5], [6],
results inl terlms of the filnalL cost alnd executiona tilme. Three [7], [3], [8], [9], [10], [11], [12][13] [2].
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18000- in the implementation of the SA algorithm. The stage of the
16000 - hybrid approach may be integrated more fully, to yield a more
14000-- powerful and robust algorithm.
12000-- Another method for obtaining more quality results can be
lutu10000t- performing reheating techniques in simulated annealing. By
8000- -------------------------------------------------reheating, one can get rid of hinging on local minima.

4000 - TABLE V

2000 - COMIARISON 0F TH[E TWO TIMETAIBES1:sEIRAAREI) MANUALLY ANI) 13Y
0 -_I SIMULATED ANNEALING.

0 5000 10000 15000 20000 25000 30000
Iteration Manually by the Staff With Simulated Annealing

501100 3600
Fig. 5. Change of cost during the annealing process

If the history of the solution approaches are looked into, one
can notice that various solving methods have been proposed REFERENCES
for this problem. Operations Research literature has been [1] E. Tsang, Foundotions of constrairtsatisrrjction. London and San
extensively studied in building university timetables over the Diego: Academic Press, 1993.
last 30 years. There are new solution techniques which have [2] T. Muller, "Constraint-based timetabling,7 Ph.D. dissertation, Charles

been eolvingalongide th develpment in mahematis and University, 2005-
beenevolving alongside the dev1.E xSE :e l1entDSin mc ad 1[3] D. Abramson, "Constructing school timetables using simulated anneal-
computer sciences. The methods for solutions vary from graph ing, Managenment Scierzce, vol. 37, no. 1, pp. 98-113, 1991.
coloring to complex meta-heuristic algorithms, including Lin- [4] T. Duong, "Combining constraint programming and simulated annealing
earProgramming formulations fitted to the specific problem on university exam tim-etabling" ResearchiInformoarics Vietnam aoodear PrograllLlxlLlg fornalLatlols fitte to thespecific problelxlL Fran cophone, pp. 205-210, 2004.

at hand. Hertz [14] has applied Tabu Search techniques, [5] M. Almond, "An algorithm for constructing university timetables,"
Abramson [3] use simulated annealing and several authors like Computer Journal, vol. 8, pp. 331-340, 1996.

[6] A. Tripathy, "School timetabling, a case in large binary integer linearBurke et alL. [8], Ross et al. [15] and Paechter et alL. [116] have programming"Ma,"aagentent Science, vol. 30, pp. 1473-1489, 1984.
developed procedures based on variants of genetic algorithms. [7] D. Werra, "An introduction to timetabling," European Jourmal of Oper-
A different approach is Constraint Logic Programming, as ation Research, vol. 19, pp. 151-162, 1985.
Brailsford [12]. [8] D. E. Edmund Burke and R. Weare, "A genetic algorithm baseduniversity timetabling system," East-West Interniational Conference on

In recent years, hybrid methods become more popular and Computer Technologies in Education, vol. 1, pp. 35-40, 1994.
they are found more worthy to study on. The aim of the hybrid [9] V. A. H Gunadhi and W. Yeong, "Automated timetabling using an object

oriented scheduler?" Expert Svstens with Applications, vol. 10, no. 2, pp.approach is to take the best ideas from one approach and 243-256,1996.
incorporate them with other good ideas from other approaches. [10] N. J. Christelle Guret and C. Prins, "Building university timetables using
In spite of the shortcomings of the comparisons, the hybrid constraint logic programming" In Practice and Theory of Automated

approaches stillproveaspromisingalgo
.

HybrTirmetabling pp. 130-145, 1996.approaches still prove as promiLsing algoriLthms. HybriLdiLzatiLon [11 ] A. Schaerf "A survey of automated timetabling," Articifial Intelligence
has been proven to be very effective in the course timetabling Review, vol. 13, no. 2, pp. 87-127, 1999.
literature [17], [18], [19]. [12] C. N. P. s C Brailsford and B. M. Smith, "Constraint satisfaction prob-

lems: Algorithms and applications," Europealn Journal of Operational
VI, CONCLUSION Research, no. 119, pp. 557-581, 1999.[13] S. Abdennadher and M. Marte, "University course timetabling using

This paper presents simulated annealing mechanism for constraint handling rules," Journal of Applied Artificial Intelligence,
the cusshdig rbe oth uiriy cvol. 14, no. 4, pp. 311-326, 2000.

the course scheduling problem of the university's computer [14] A. Hertz, "Finding a feasible course schedule using tabu search,"
engineering department. The approach is successfully realized Dis.crete Appl. Math/., vol. 35, no. 3, pp. 255-270, 1992.
by customizing the method for the application's specific needs. [15] D. Corne and P. Ross, Practice and Theory of Automated Timetabling,

J. H. Kingston, Ed. Springer-Verlag, 1996, vol. 1153.The manually obtained timetable in the 2007-2008 fall term [16] M. G. N. Ben Paechter, Andrew Cumming and H. Luchian, Practice
has a higher cost than the one obtained by SA method and Theory of Automated Timetabling. Springer Berlin / Heidelberg,
(see Table V). The method satisfies the hard constraints in 1996 vol. IL53.

[17] S. Abdullah and A. R. Hamdan, "A hybrid approach for university coursethe problem and finds out a feasible solution by means of -ilealn,-7trltollJura fCoptrSirc rdNtoltimetabling, Is ternational Joitmral (f Computer Science and Netwark
exploiting a number of soft constraints. By utilizing three Security,, vol. 8, no. 8, 2008.
different neighborhood searching algorithms together with [18] J Thompson and K. Dowsland, "A robust simulated annealing based

examination timetabling system," Computers and Operations ResearchtheiLr combinations, the best result iLS achieved, vol. 25, pp. 637-648, 1998.
For less solution time, the balance between solution quality [19] P. Kostuch, "The university course timetabling problem with a three-

and search timne canr be achieved through the predefilned-timne phase approach." Inte -national Conrlfrence on the Pr-actice anld TIheory
simulaed anealintechique sed i thisSA alorith, For of Automated Timetahli7ng (PATAT V), pp. 1L09-125, 2005.

aftrwork, the results of the experiments demonstrated in
the previous sectioln caln be imuproved by some modificatiolns
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