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Abstract— This paper tackles the NP-complete problem of
academic class scheduling (or timetabling). The aim is to find a
feasible timetable for the department of computer engineering
in fzmir Institute of Techmology. The approach focuses on
simulated annealing. We compare the performance of various
neighborhood searching algorithms based on so-called simple
search, swapping, simple search-swapping and their combinations,
taking into account the execution times and the final costs. The
most satisfactory timetable is achieved with the combination of
all these three algorithms. The results highlight the efficacy of
the proposed scheme.
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I. INTRODUCTION

The University Course Timetabling Problem (UCTP) is a
common problem that almost every university has to solve.
The basic definition states that UCTP is a task of assigning the
events of a university (lectures, activities, etc) to the various
resources such as lecturers, classrooms and time slots. This
is done by minimizing the violations of a predefined set of
constraints. In other words, no teacher, no class or no room
should appear more than once in any period of time.

There are also other timetabling problems described in the
literature such as examination timetabling, school timetabling,
employee timetabling, efc.. All these problems share similar
characteristics and they are similarly difficult to solve. The
general university course timetabling problem is known to be
NP-complete, as many ol the subproblems are associated with
additional consiraints.

The intention of this paper is to study course timetabling
with special emphasis on department-based timetabling as a
classical application area where various lypes of prelerences
need to be satisfied to obtain a feasible solution. Thus, it is
focused on the solution techmiques for course timetabling of
Izmir Tnstitute of Technology Computer Engineering Depart-
ment.

In the following section, the course scheduling problem in
the university is presented. This is done in two steps: We first
describe the problem, then give some formal definitions. In
section III, Simulated Annealing (SA) method is presented.
Our approach is mainly based on SA, vet the performance of
SA highly rely on the initial solution, neighborhood search and
cooling process, as described in section ITI. We use consiraint
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programming for finding an initial solution and try various
neighborhood search algorithms. The comparison results are
demonstrated in section IV and related work is given in section
V. Finally, we conclude the paper in section VI

II. COURSE SCHEDULING PROBLEM

In the Department of Computer Engineering of Izmir Insti-
tute of Technology, course scheduling has been performed by
the senior staff members manually so far. However, solving
the course scheduling problem by hand usually might fail to
satisfy all the constraints. According to the definition of course
scheduling, in order to obtain an appropriate solution, all hard
constraints have to be satisfied, while wrying to fulfill as many
soft constraints as possible. As a case study, 2007 — 2008
Fall Semester is handled. This problem consists of 5 classes
(including postgraduate classes) with 5 classrooms and a
shared laboratory. In this case, any constraint related with
classrooms is ignored such as capacity of the rooms or room
availability, since each class has its own classroom in computer
engineering department. Totally there are 20 lectures given by
8 instructors in this case study. Lecture durations can change
between 3 and 5, but the lectures that take 5 time slots are
divided as 3 slots for theoretical and 2 slots for laboratory
lectures. Hence, the laboratory lessons are considered as a
separate lesson of which duration is 2 time slots and they are
assigned to the laboratory. There can be maximum 8 time slots
for one day in the university, i.e., there are 40 time slots per
week. By considering all these conditions, the hard constraints
can be constructed as follows:

C4:  Fach instructor can take only one class at a time.

C'5: Clashes must not occur between the lectures for

students of one class.

Js: If any instructor has some requests that have to be

satisfied, their demands must be fulfilled.

Cy: If any class has to take lectures from other de-
partments, the time slots that are given from those
departments must be allowed to those lectures.

Cs: All lectures must start and finish in the same day.

The soft constraints taken into account are:

Cg: The number of alternatives that students can attend
should be maximized.

Cr:  The student conflicts between lectures should be
minimized.
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Cg:  Friday should be free for all classes.
Cy:  Preferences of instructors should be fulfilled.

The model of the case study problem is modeled according
to the definition of constraint satisfaction problem. A con-
straint satisfaction problem is a triple (7, D, C) where 7 is a
finite set of variables {xy, 29, - , 2z, }, D is a function which
maps every variable in /Z to a set of objects of arbitrary type,
ie, D : Z — finite set of objects (of any type). 1J,,, the
domain of x;, is taken as the set of objects mapped from =
by D. These objects are called possible values of x; and the
set [),,. C is a finite (possibly empty) set of constraints on an
arbitrary subset of variables in Z. In other words, C is a set of
sets of compound labels. Because course scheduling problem
is a real life problem which has plenty ol constraints, it is
categorized under the optimization problem. Hence the triple
definition of the constraint satisfaction problem (denoted by
Py becomes quadruple (Z, D, C, F') where F is the objective
function that indicates the quality of the solution. Formally,
we denote with ¢s(P) the solution of P by any constraint
satisfaction method [1]. Similarly, we use sa(P) to denote the
solution of P by simulated annealing.

Starting from a good point for searching a feasible solution
is a very critical step in simulated annealing. We use constraint
satisfaction methods for an initial timetable satisfying all the
hard constraints and some of the soll constraints. Subsequently
for fine tuning, we use simulated annealing in order to opti-
mize a given objective function, F'. This optimization allows
us to take into account the soft constraints more effectively.

The model consists of a set of resources and a set of activ-
ities. The time slots can be assigned a constraint, either hard
or soft; a hard constraint indicates that the slot is forbidden
for any activity, a soft constraint indicates that the slot is not
preferred. These constraints are called as fime preferences.
Time preferences can be assigned to each activity and each
resource, which indicate forbidden and non preferable time
slots [2]. The lectures are called activities in the timetabling
model. Every activity is defined by its duration (expressed as
a number of time slots), by time preferences, and by a set of
resources. Activities require these set of resources. Resources
also can be described by time preferences. Only one activity
can use a resource at any time. Each resource can represent
a teacher, a class, a classroom, or another special resource.
The solution of the problem defined by the above model is a
timetable where every scheduled activity has its assigned start
time and a set of reserved resources needed for its execution.
This timetable must satisfy all the hard constraints. According
to this structure;

1) Bvery scheduled activity has all the required resources
reserved.

2y Two scheduled activities cannot use the same resource
at the same time.

3) No activity is scheduled into a time slot where the
activity or some of s reserved resources has a hard
constraint in the time preferences.
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Furthermore, the number of violated soft constraints are tried
to be minimized.

IT1. SIMULATED ANNEALING METHOD

The application of Simulated Annealing (SA) to the
timetabling problem is relatively straight forward. The par-
ticles are replaced by elements. The system energy can be
defined by the timetable cost for timetable modeling. An initial
allocation 1s made in which elements are placed in a randomly
chosen period. The initial cost and an initial temperature
are computed. To determine the quality of the solution, the
cost has a critical role in the algorithm just as the system
energy role in the quality of a particle being annealed. The
temperature 1s used to control the probability of an increase
in cost and can be likened by the temperature of a physical
particle [3].

The change in cost is the difference of two costs; one of
them is the first cost that is before the perturbation and the
second one is the cost after the randomly chosen element is
changed of an activity. The element is moved if the change in
cost is accepted, either because it lowers the system cost, or
the increase is allowed at the current temperature. According
to the timetabling problem model, the cost of removing an
clement usually consists of a class cost, an instructor cost and
a room cost.

SA is an iterative method and a typical SA algorithm accepts
a new solution if its cost is lower than the cost of the current
solution in each iteration. Even if the cost of the new solution
i greater, there is a probability of this solution to be accepted.
With this acceptance criterion it is then possible to climb out
of a local minima. The SA algorithm we use, denoted with
sa(P), can be seen in Fig. 1 [4].

Find a random initial solution s := sg using cs{P)
Select an initial temperature ¢ 1= o > 0
Select a temperature reduction function «
repeat
repeat
& 1= NeighborhoodSearching(s)
§:=F(s") - F(s)
(6 < 0) or (exp(—48/t) < rand|0,1]))
5 8
endif
until iteration_count = 7t,¢p
t := CoolingSchedule(t)
until stopping condition is true

Fig. 1. Pseudo-code of the SA algorithm

One should note that several aspects of the SA algorithm are
problem oriented. In the design of a good annealing algorithm,
deciding about proper neighborhood structure, cost function
and cooling schedule are of paramount importance. We only
focus on neighborhood searching in this context.

A. Neighborhood Searching

In order to implement the SA algorithm a neighborhood
structure must be defined. This is the key component of any
simulated annealing method. In this study, three algorithms
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are handled in different combinations. In each iteration of the
algorithm, neighborhood searching is performed once to find
out the next possible solution set. More explicitly, we utilize
the following algorithms:

5]

Fig. 2.

Fig. 3.

Fig. 4.

Simple Searching Neighborhood (89N ): The first one
of the neighbor algorithm is simple searching neighbor-
hood. It randomly chooses one activity and one slot. The
chosen slot is assigned as the start time of the selected
activity (see Fig. 2). Please note that Slot(ac) depicts
the statting slot of activity ac.

Swapping Neighborhoods (SWN): The second algo-
rithm selects randomly two activities and swaps their
start times (see Fig. 3).

Simple Searching and Swapping Neighborhoods
(S*WN): This neighborhood searching algorithm
chooses randomly two activities and two slots. These
two slots are assigned as the start times of the randomly
selected activities (see in Fig. 4).

SSNO

{ ac = select_random_activity();
sl = select_random _time_slot();
Slot(ac) := sl;

Pseudo-code of the SSN algorithm used in neighborhood searching.

SWNO

{ acl = selectrandom_activity1();
ac2 = select_random_activity2();
sl = Slot(acl);
Slot{acl) = Slot{ac2);
Slot(ac2) := sl;

}

Pseudo-code of the SWN algorithim used in neighborhood searching.

SPWNQO

{ acl := select.random_activity 1();
ac? = select_random_activity2();
sl1 := select_random_time_slot1();
s12 = select random_time _slot2();
Slot(acl) = sli;
Slot(ac2) = s12;

}

Pseudo-code of the $*WN algorithm used in neighborhood searching.

B. Cost Calculation

For the case of course scheduling, the cost calculation (ries
to show the influences of both the hard constraints and soft
constraints. Penalty scores of both the hard constraints and soft
constraints are presented below. Each constraint is defined by
a penalty score function. The conditions that the timetable has
penalties for hard constraints are:
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1y

2)

4)

6)

If the activity slots are hard slots that violate the hard
constraints of that activity;

(1)

where n is the number of activities, w; 18 the weight
and 77 is the number of time slots which are forbidden
to the activities.

If the same instructor is assigned to two activities at the
same time;

n—=1L n
Fo, = ws Z Z Iij, 2)
i=1 j=i+1

where n is the number of activities, wq 15 the weight,
I;; is the number of instructors who give two lectures,
+ and 7, at the same lime.

If the same class is assigned (0 two activities at the same

time;
n—-1 n
FC’g — w3 C iy
1

i=1 j=i-

(3)

where n is the number ol aclivities, ws is the weight,
4 is the number of classes which are given to two
lectures, ¢ and j, at the same time.

If the activity slots are separated into two days. (Each
activity must start and finish in the same day).

(4)

where n is the number of activities, X, is the number
of time slots which are given (o lectures ¢, it is a
boolean variable which becomes true when the course
is separated into two days and wy is the weight.

The conditions that the timetable has penaldes for soft
constraints are:

If the activity slots are soft slots that violates the soft
constraints of which activity;

i
I ;‘(;'5 we E Yh
i=1

where n is the mumber of activities, Y; is the number of
time slots which depends on preferences of instructors
and ws is the weight. It can be inferred soft slots either.
If there is any student conflict between the previously
failed lectures that a student has to take, and the regular
lectures that are yet to be taken.

(5)

n—1 T
Foy =ws 3. S Sy, (6)
i=1 j=i++1

where n is the number of activities, 5y; is the number
of students who take two lectures of different classes, 4
and 7, at the same time. If a student follows an irregular
program, the lecture conflicts are minimized by this
constraint. It is taken as a soft constraint, otherwise
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course scheduling problems would be very strict and
had no solution.

To determine the student conflicts, all the information about
the students and lectures are collected from the university’s
database system so that any irregular situation can be identi-
fied. For instance, if a third year standing student has some
unsatisfied courses from the second year, which conflict with
the third year courses, these conflicts should be avoided.

For hard constraints, the given penalties (w;) must be very
high, e.g., approximately co. For soft constraints, penalties can
be chosen smaller, taking into account the priorities of the
constraints. Therefore, the cost function F' can be calculated
as the sum of those hard and soft constraints, 1.¢.,

F = Fo, + Fo, + Fo, + Fo, + Fo, + Fep. (D

C. Cooling Schediile
We use geomelric cooling schedule as the cooling function.
In every n,.p iterations, the next temperature is found by

t = ot ©))

where « is the reduction parameter for geometric cooling and
calculated as,

a=1—{In(t)—In(ts))/Nmov. (9

where ¢ is the current temperature, £y is the final temperature
and Npope 18 a fixed value that affects the duration of the
temperature decrease. The parameter of n,., is chosen as
3, which returns the best solution cost within an acceptable
execution time. To determine n,.p, several different values
such as 1,2.3,5,6 and 10 are experimented. A rough initial
temperature ¢, is assigned 10000. This temperature is hot
enough to allow moves to almost every neighborhood state,
and the SA algorithm iteratively updates the temperature using
the functional dependence between the starting acceptance
probability yo (60% to 70%) and the starting temperature £y,
This functional dependence is as follows:

Xo = X((Sla 671; 5n+l: Tty 5m: t())
T
= 1/m Z exp(—d;/to) + (m —n)/n (10
where &; = F(s;) — F{so), sp is the initial solution, s;

is a neighbor solution of sg, £ is the cost function, m is
the size of neighbor solution space. Initial temperature £ i
derived from the starting acceptance probability xo using the
algorithm presented in [4]. For instance, in our settings, o is
calculated as 5000. This algorithm has to be run only once
before executing the SA algorithm.
IV. EXPERIMENTAL RESULTS

In the experiments, we mainly focus on the comparisons
of the neighborhood search algorithms. First, one can sce
the effect of Nywe on the total execution time of the SA
algorithm and the final cost in Table 1. In the rest of the
tables, we use Nuve = 500 since it gives the most satisfactory
results in terms of the final cost and execution time. Three
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TABLE I
THE EFFECT OF Nypove ON COSTS AND EXECUTION TIMES.

| Noove || 10 [ 50 [ 100 ][ 500 [ 1000 ][ 3000 |
Execution
time (sec) 0.8 3 6 29 60 154
Cost 2018800 4100 3500 3300 3400 3300

different neighborhood searching algorithms are demonstrated.
First, Table I compare three different algorithms presented
in the previous sections, namely SSN, SWN and S°WN.
According to the table, SSN provides the best result. Since
SA is a heuristic method, several experiments should be
done and the technique that returns the best result in an
appropriate time should be chosen. Table I and IV show
an hybrid approach. The former one considers three pairs
in combination, ic, SSN — SWN, SWN — S®WN and
SSN-—-5*W N, The latter shows the case that three algorithms
are used all together. This consists of two cases, A and B.
In case A, all algorithms are execuled sequentially in each
iteration. In case B, they are executed in turn basis, which
turns the best result among all these trials. Finally, in Fig. IV,

TABLE II
COSTS AND EXECUTION TIMES WITH THREE NEIGHBORHOOD SEARCH
ALGORITHMS.

SSN SWN S°WN
Cost | CPU(sec) Cost | CPU(sec) Cost | CPU(sec)
3900 29 9300 40 4300 34
TABLE III

COSTS AND EXECUTION TIMES WITH THE COMBINATIONS OF SN, SWN
AND SOV N.

SSN and SWN SSN and SPWN SWN and S°WN
Cost | CPU(sec) Cost | CPU(sec) Cost | CPU(sec)
3900 28 4900 27 3700 31

TABLE IV

COSTS AND EXECUTION TIMES WHEN SSN, SWN AND STWN ARE USED
ALL TOGETHER.

Case A (sequentially)
Cost CPU(sec)
4100 87

Case B (in turn)
Cost | CPU(sec)
3600 28

the cost change during the annealing (in case B) is illustrated.
In the first phase, the initial cost obtained by ¢s(P) is 17600,
After the annealing, the cost achieves its final value of 3600.

V. RELATED WORK

Timetabling problem has been worked on over the years,
so that many different solutions have been proposed. Precise
and heuristic solution approaches for the school and university
timetabling problem have been studied since the 1960s [5], [6],
171, 131 8], 191, {10], [11], {12}, [13], [2].
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Fig. 5. Change of cost during the annealing process

If the history of the solution approaches are looked into, one
can notice that various solving methods have been proposed
for this problem. Operations Research literature has been
extensively studied in building university timetables over the
last 30 years. There are new solution techniques which have
been evolving alongside the developments in mathematics and
computer sciences. The methods for solutions vary from graph
coloring to complex meta-heuristic algorithms, including Lin-
ear Programming formulations fitted to the specific problem
at hand. Hertz [14] has applied Tabu Search techniques,
Abramson [3] use simulated annealing and several authors like
Burke et al. [8], Ross et al. [15] and Paechter et al. [16] have
developed procedures based on variants of genetic algorithms.
A different approach is Constraint Logic Programming, as
Brailsford [12].

In recent years, hybrid methods become more popular and
they are found more worthy to study on. The aim of the hybrid
approach is to take the best ideas from one approach and
incorporate them with other good ideas from other approaches.
In spite of the shortcomings of the comparisons, the hybrid
approaches still prove as promising algorithms. Hybridization
has been proven to be very effective in the course timetabling
literature [17], [18], [19L

VI. CONCLUSION

This paper presents simulated annealing mechanism for
the course scheduling problem of the university’s computer
engineering department. The approach is successfully realized
by customizing the method for the application’s specific needs.
The manually obtained timetable in the 2007-2008 fall term
has a higher cost than the one obtained by SA method
(see Table V). The method satisfies the hard constraints in
the problem and finds out a feasible solution by means of
exploiting a number of soft constraints. By utilizing three
different neighborhood searching algorithms together with
their combinations, the best result is achieved.

For less solution time, the balance between solution quality
and search time can be achieved through the predefined-time
simulated annealing technique used in this SA algorithm. For
a future work, the results of the experiments demonsitrated in
the previous section can be improved by some modifications
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in the implementation of the SA algorithm. The stage of the
hybrid approach may be integrated more fully, to yield a more
powerful and robust algorithm.

Another method for obtaining more quality results can be
performing reheating techniques in simulated annealing. By
reheating, one can get rid of hinging on local minima.

TABLE V
COMPARISON OF THE TWO TIMETABLES PREPARED MANUALLY AND BY
SIMULATED ANNEALING.

Manually by the Staff
5011800

With Simulated Annealing
3600
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