
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gipe20

Download by: [Izmir Yuksek Teknologi Enstitusu] Date: 11 November 2016, At: 00:37

Inverse Problems in Science and Engineering

ISSN: 1741-5977 (Print) 1741-5985 (Online) Journal homepage: http://www.tandfonline.com/loi/gipe20

Taylor series approximation of semi-blind BLUE
channel estimates with applications to DTV

Christopher Pladdy , Serdar Özen , S. M. Nerayanuru , Peilu Ding , Mark J.
Fimoff & Michael Zoltowski

To cite this article: Christopher Pladdy , Serdar Özen , S. M. Nerayanuru , Peilu Ding , Mark
J. Fimoff & Michael Zoltowski (2008) Taylor series approximation of semi-blind BLUE channel
estimates with applications to DTV, Inverse Problems in Science and Engineering, 16:3,
303-324, DOI: 10.1080/17415970701743350

To link to this article:  http://dx.doi.org/10.1080/17415970701743350

Published online: 21 Apr 2008.

Submit your article to this journal 

Article views: 17

View related articles 

Citing articles: 1 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gipe20
http://www.tandfonline.com/loi/gipe20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17415970701743350
http://dx.doi.org/10.1080/17415970701743350
http://www.tandfonline.com/action/authorSubmission?journalCode=gipe20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gipe20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17415970701743350
http://www.tandfonline.com/doi/mlt/10.1080/17415970701743350
http://www.tandfonline.com/doi/citedby/10.1080/17415970701743350#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/17415970701743350#tabModule


Inverse Problems in Science and Engineering
Vol. 16, No. 3, April 2008, 303–324

Taylor series approximation of semi-blind BLUE channel

estimates with applications to DTV

CHRISTOPHER PLADDY*y, SERDAR ÖZENz, S. M. NERAYANURUx,
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We present a low-complexity method for approximating the semi-blind best linear unbiased
estimate (BLUE) of a channel impulse response (CIR) vector for a communication system,
which utilizes a periodically transmitted training sequence. The BLUE, for h, for the general
linear model, y¼Ahþwþ n, where w is correlated noise (dependent on the CIR, h) and
the vector n is an Additive White Gaussian Noise (AWGN) process, which is uncorrelated with
w is given by h¼ (ATC(h)�1A)�1ATC(h)�1y. In the present work, we propose a Taylor series
approximation for the function F(h)¼ (ATC(h)�1A)�1ATC(h)�1y. We describe the full Taylor
formula for this function and describe algorithms using, first-, second-, and third-order
approximations, respectively. The algorithms give better performance than correlation channel
estimates and previous approximations used, at only a slight increase in complexity. Our
algorithm is derived and works within the framework imposed by the ATSC 8-VSB DTV
transmission system, but will generalize to any communication system utilizing a training
sequence embedded within data.

Keywords: Semi-blind channel estimation; Best linear unbiased estimation; Taylor series
approximation; Linearization; Gauss Markoff Theorem; Training-based channel estimation

AMS 2000 Mathematics Subject Classifications: 60G35; 93E10; 93E12; 93E24; 94A99

1. Introduction and notation

In digital communication systems, the medium that relays the signal (the atmosphere,
telephone lines, optical cable, etc.) is called the channel and is characterized by a vector
known as the channel impulse response (CIR). The received signal is given by the
(discrete) convolution of the transmitted signal and the CIR vector. Accurate estimation
of the channel impulse response is often required to facilitate reliable communication
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using equalization of the channel. Equalization is the process of compensating for
unwanted channel features, which produce interference between symbols (known as
intersymbol interference or ISI) that is caused by distortion introduced by the finite
bandwidth and nonideal characteristics of the filters and amplifiers within the system
[1,2]. When ISI is present, the desired information is observed as a function of other
information symbols, as well as the CIR.

The process of equalization involves determining filters, which are given by the
solution of equations that depend on the CIR vector. Hence, an accurate estimate of the
CIR vector is often essential for equalization of the received signal.

With this ultimate problem of the determination of equalizing filters for digital
signals in mind, the inverse problem, which we consider is that of deconvolution of a
CIR vector from transmitted data, using knowledge of the received data. As described
above, this is a standard deconvolution problem of digital communication.

Traditional channel estimation techniques are based on using a training sequence:
that is, a periodically sent known data sequence, which is also stored at the receiver.
Most communication standards utilize a training sequence to estimate the channel (e.g.,
GSM). Training-based channel estimation suffers from various drawbacks particular to
the specific communications systems under consideration. For instance in our case, for
the 8-VSB modulation system (the North American standard for High-definition
television (HDTV) over-the-airwaves transmisson) the training sequence is not
sufficiently long in relation to the observed possible CIR vector lengths to form an
overdetermined system for reliable least-squares solution. (The training sequence length
is set in the standard and so cannot be altered.)

Blind channel estimation allows for estimation of the channel based on only the
statistics of the received (unknown) signal, and does not use a known training sequence.

Semi-blind algorithms exploit information used by blind methods (for example, the
statistics of the unknown data symbols) as well as information from known training
symbols. In general, semi-blind methods make both training-based and blind methods
more robust, and performance improvements are achieved. For general references on
blind and semi-blind channel estimation, see [3]. Several recent papers consider different
aspects of semi-blind channel estimation. Notably [4], considers identifiability
conditions, and [5–8] consider different aspects of the semi-blind approach.

Our algorithm is designed to work within the constraints imposed by the ATSC digital
TV 8-VSB modulation system [9]. This standard uses a training sequence of length 728
repeated every frame of 260,416 data symbols. Channel lengths of 400–500 symbols have
been inferred from the delay spreads observed in urban multipath data captures. Such
channels are too long to form an overdetermined system for an accurate least-squares
estimate of the channel without extending the system of equations, so that we must
consider correlated noise due to unknown data. Hence, we are led to the use of the
statistics of the unknown data surrounding the training sequence. This consideration
makes our algorithm a semi-blind algorithm: it uses both training data and statistics of
unknown data.

We describe broadly the equalizer architecture that we use. Our channel estimation
algorithm is used as a fast way to initialize our channel estimate, which in turn is used to
compute tap weights for equalizer filters. We can use either a decision feedback
equalizer (DFE) [1], or a predictive-decision feedback equalizer (pDFE) [1]. The pDFE
uses a noise cancelling feedback filter and operates in the frequency domain, where fast
computation of filter tap weights and fast filtering is possible due to use of the FFT to
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transform the convolution operation in the time domain into point-wise multiplication
in the frequency domain. For more details see [1,10–11]. After this initial computation
of equalizer tap-weights from the CIR vector estimate, the tap-weights vary adaptively
(via Least Mean Square or other optimization methods [12–14]) to equalize the
(possibly time-varying) channel. The training sequence can be used each time it is
transmitted to reinitialize the CIR estimate, if tracking of the equalizer tap-weights is
failing due to some adverse conditions. In this articles we describe an algorithm to solve
the CIR estimation problem that constitutes a single ‘‘block’’ in the broader problem of
equalization. We do not discuss the specifics of equalization beyond this point, but
merely mention the topic to give the context of our problem.

The physical channel may have changed significantly from the reception of one
training burst to the arrival of the next, and so we require a channel estimation method
that yields a good estimate based on a single burst of training data. To achieve this, our
method considers an overdetermined system, which must account for correlated noise
due to transmission data. Our algorithm allows for such accurate channel estimation,
even in a mobile setting. In [15] and [16], we devised a semi-blind iterative algorithm to
construct the best linear unbiased estimate (BLUE) of the channel, which is given by the
Gauss–Markoff Theorem ([17–19]) as

hBLUE ¼ ðATCðhÞ�1AÞ�1ATCðhÞ�1y ð1Þ

in the case where we have the general linear model for the received data, i.e., where the
noise is not white, since we consider correlated noise due to unknown data, where, in
our case, the noise is correlated due to convolution with the CIR.

We describe in detail, in the following sections, the channel model, channel
estimation via the correlation method, and the general linear model that we use for
channel estimation.

2. Baseband data transmission model

The baseband symbol rate sampled receiver pulse-matched filter output is given by

y½n� � yðtÞ
��
t¼nT

¼
X
k

Ikh½n� k� þ v½n�, ð2Þ

¼
X
k

Ikh½n� k� þ
X
k

�½k�q�½�nþ k� ð3Þ

where Ik 2 f�1, . . . ,�Mg � C is the M-ary complex valued training sequence. {ak}
denotes the first N known (training) symbols within a frame of length N0 and {dk}
denotes the remaining N0�N random data within the frame. v(t)¼ �(t) � q*(�t) denotes
the complex (colored) noise process at the output of the receiver (pulse) matched filter,
with �(t) being a zero-mean white Gaussian noise process with spectral density �2

� per
real and imaginary part. h(t) is the complex valued impulse response of the composite
dynamic channel, including the pulse shaping transmit filter q(t), the physical channel
impulse response c(t), and the receive filter q*(�t) and is given by

hðtÞ ¼ pðtÞ � cðtÞ ¼
XL
k¼�K

ckpðt� �kÞ, ð4Þ
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and p(t)¼ q(t) � q*(�t) is the convolution of the transmit and receive filters, where q(t)
has a finite support of [�Tq/2, Tq/2], and the span of the transmit and receive filters, Tq,
is an integer multiple of the symbol period, T. That is, Tq¼NqT¼ 2Lq, Nq 2 Zþ.
fckg � C denote the complex valued physical channel gains and {�k} denote the multi-
path delays or the time-of-arrivals (TOA). We also note that for the 8-VSB system, the
transmitter pulse shape is the Hermitian symmetric root raised cosine pulse, which
implies that q(t)¼ q*(�t). In the sequel, we will denote both the transmit and receive
filters by q½n� � qðtÞ t¼nTj . Also the sampled matched filter output signal, y[n], will be
used extensively in vector form, and so we introduce the notation
y½n1:n2� ¼ ½y½n1�, . . . , y½n2��

T
2 Rn2�n1þ1. Similarly �½n1:n2� ¼ ½�½n1�, . . . , �½n2��

T
2 Rn2�n1þ1

and �½n1:n2� ¼ ½�½n1�, . . . , �½n2��
T
2 Rn2�n1þ1.

3. Channel estimation via correlation

Some of the material contained in sections 3 and 4 is also present in [16]. We include it
here for completeness. Channel estimation via correlation is typically performed by
correlating the received signal with a copy of the training sequence stored at the
receiver. Cox [20] initially considered this problem for outdoor channels, while
Devasirvatham [21] considered indoor channels and Parsons et al. [22] reduced the
complexity of the algorithm for implementation. Correlation used for initial
synchronization is considered in [23]. Other works that consider channel estimation
via correlation are [24–26].

We denote the channel estimate obtained via correlation by

hcorr ¼ ½hcorr½�Na�, . . . , hcorr½�1�, hcorr½0�, hcorr½1�, . . . , hcorr½Nc��
T

given by

hcorr½k� ¼
XN�1þk

n¼k

y½n�an�k

Collecting together (NaþNcþ 1) of these equations, in matrix vector form the
correlation channel estimate is given by

hcorr ¼ bAy½�Na:NcþN�1� ð5Þ

where

bA ¼ T a0, 0
T
NaþNc

h iT
, a0, . . . , aN�1, 0

T
NaþNc

h i� �

¼

a0 a1 . . . aN�1 0 . . . 0

0 a0 a1 . . . aN�1
. .
. ..

.

..

. . .
. . .

. . .
.

. . . . .
.

0

0 . . . 0 a0 a1 . . . aN�1

2666664

3777775
is the (NaþNcþ 1)� (NaþNcþN) Toeplitz convolution matrix with first column
½a0, 0

T
NaþNc

�
T and first row ½a0, . . . , aN�1, 0

T
NaþNc

�:
The received signal, y½�Na:NcþN�1�, is given by

y½�Na:NcþN�1� ¼ Xhþ v½�Na:NcþN�1�
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where v½�NaþNcþN�1� ¼ bQ�½�Na�Lq:NcþN�1�Lq�, where �½�Na�Lq:NcþN�1�Lq� is additive white

Gaussian noise and bQ 2 RðNaþNcþNÞ�ðNaþNcþNþ2LqÞ is given by

bQ ¼

qT 0 . . . 0

0 qT . . . 0

..

. ..
. . .

. ..
.

0 0 . . . qT

266664
377775

and

qT ¼ ½q½þLq�, . . . , q½0�, . . . q½�Lq�� 2 R2Lqþ1

where q denotes the symbol rate sampled receiver pulse matched filter. The matrix X is

given by

X ¼ T x½0:NaþNcþN�1�, x
T
½0:�Nc�Na�

n o
the (NaþNcþN) � (NaþNcþ 1) Toeplitz matrix with first column x½0:NaþNcþN�1� and

first row xT½0:�Nc�Na�
. The values of xn are given by

xn ¼
an for all 0 � n � N� 1

dn for all other n

�
:

Hence

X ¼

a0 d�1 . . . d�Nc�Na

a1 a0
. .
. ..

.

..

.
a1

. .
.

d�1

aN�1
..
. . .

.
a0

dN aN�1
. .
.

a1

..

. . .
. . .

. ..
.

dNaþNcþN�1 . . . dN aN�1

266666666666666664

377777777777777775
¼ ðbAÞT þ ðbDÞ

T

where

ðbDÞ
T
¼

0 d�1 . . . d�Nc�Na

0 0 . .
. ..

.

..

.
0 . .

.
d�1

0 ..
. . .

.
0

dN 0 . .
.

0

..

. . .
. . .

. ..
.

dNaþNcþN�1 . . . dN 0

26666666666664

37777777777775
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Hence, using (3), we have,

hcorr ¼ bAy½�Na:NcþN�1�

¼ bAðbAÞThþ bAðbDÞ
Thþ bAv½�Na:NcþN�1�

ð6Þ

If the training sequence has been sent in isolation of transmission data (purely a

sounding sequence), then the term bAðbDÞ
Th does not occur. In our case, the training

sequence is embedded in transmission data and this term does appear, degrading the
correlation estimate from the case where a sounding sequence alone is used as training.

The general idea of the correlation estimate is that bAðbAÞT is very close to the identity

matrix, due to the pseudonoise properties of the training sequence, and so we see that

the correlation estimate approximates the actual channel with the addition of the noise

term, bAv½�Na:NcþN�1�. The situation is worse for the case of a training sequence
embedded in transmission data due to the term bAðbDÞ

Th.

4. Matrix–vector formulation of the transmisson model

4.1. Formulation of the least squares channel estimation problem

Without loss of generality, the symbol rate sampled, complex-valued composite CIR,
h[n], can be written as a finite dimensional vector

h ¼ ½h½�Na�, . . . , h½�1�, h½0�, h½1�, . . . , h½Nc��
T

where Na and Nc denote the number of anticausal and causal taps respectively. Based on

(2), and assuming that N � (NaþNcþ 1), we can write the pulse matched filter output

corresponding only to the known training symbols compactly, in vector notation, as,

y½Nc:N�Na�1� ¼ eAhþ v½Nc:N�Na�1�

¼ eAhþ eQ�½Nc�Lq:N�Na�1þLq�

where eA ¼ Tf½aNn
þN

a
, . . . , aN�1�

T, ½aNnþNa
, . . . , a0�g is the (N�Na�Nc)� (NaþNcþ 1)

Toeplitz convolution matrix with first column ½aNnþNa
, . . . , aN�1�

T and first row

½aNnþNa
, . . . , a0�,

eA ¼

aNcþNa
aNcþNa�1 . . . a0

aNcþNaþ1 aNcþNa
. . . a1

..

. ..
. . .

. ..
.

aN�1 aN�2 . . . aN�1�Nc�Na

266664
377775

and v½Nc:N�Na�1� ¼ eQ�½Nc�Lq:N�Na�1þLq� is the colored noise at the receiver matched filter

output, where eQ 2 RðN�Na�NcÞ�ðN�Na�Ncþ2LqÞ is given by

eQ ¼

qT 0 . . . 0

0 qT . . . 0

..

. ..
. . .

. ..
.

0 0 . . . qT

266664
377775
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with q the symbol rate sampled receiver pulse matched filter, qT ¼ ½q½þLq�, . . . ,

q½0�, . . . , q½�Lq�� 2 R2Lqþ1. The problem which we encounter with this approach is that

the system matrix, eA, is (N�Na�Nc)� (NaþNcþ 1) dimensional. In our case the

parameter values are such that, NaþNcþ 1, which is the length of the channel is in

excess of 500 tap values. This value is determined empirically from experimental data

captures in the field. We have previously used the value NaþNcþ 1¼ 576, and we shall

briefly consider this value here. The parameter N is the training sequence length, and

this is fixed in the 8-VSB standard as 704. Hence the system is 129� 576 dimensional,

and is clearly badly underdefined. Simulations using this system give very bad least-

squares solutions for the channel vector, h.
With the above reasoning in mind, we attempt to somehow extend the size of the

linear system to give an overdetermined system.

4.2. Formulation of the overdetermined LS channel estimation problem

To this end, and in a similar manner to the development above, we can write the pulse

matched filter output that includes all the contributions from the known training symbols

(including output which includes contributions from adjacent unknown random data)

as

y½�Na:NþNc�1� ¼ ðAþDÞhþ v½�Na:NþNc�1�

¼ AhþDhþQ�½�Na�Lq:NþNc�1þLq�

ð7Þ

where

A ¼ Tf½a0, . . . , aN�1, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}
NaþNc

�
T, ½a0, 0, . . . , 0|fflfflfflffl{zfflfflfflffl}

NaþNc

�g

is the (NþNaþNc)� (NaþNcþ 1) Toeplitz matrix with first column [a0, . . . , aN�1,

0, . . . , 0]T and first row [a0, 0, . . . ,0] and

D ¼ Tf½0, . . . , 0|fflfflfflffl{zfflfflfflffl}
N

, dN, . . . , dNaþNcþN�1�
T, ½0, d�1, . . . , d�Na�Nc|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Previous frame data

�g

is a (NþNaþNc)� (NaþNcþ 1) Toeplitz matrix which includes adjacent random

infrormation symbols only, both prior to the training sequence and after the training

sequence. That is

A ¼

a0 0 . . . 0

a1 a0
. .
. ..

.

..

.
a1

. .
.

0

aN�1
..
. . .

.
a0

0 aN�1
. .
.

a1

..

. . .
. . .

. ..
.

0 . . . 0 aN�1

26666666666666664

37777777777777775
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and

D ¼

0 d�1 . . . d�Nc�Na

0 0 . .
. ..

.

..

.
0 . .

.
d�1

0 ..
. . .

.
0

dN 0 . .
.

0

..

. . .
. . .

. ..
.

dNaþNcþN�1 . . . dN 0

26666666666666664

37777777777777775
We shall only use the statistics of this random data, since the actual values are

unknown. We use these statistics to compute the covariance matrix of the correlated

noise, which is used in the solution for the BLUE estimate of h. The data symbols

d�1, . . . , d�Na�Nc
denote the unknown information symbols transmitted at the end of the

previous frame. The data symbols dN, . . . , dNaþNcþn�1 denote the unknown information

symbols transmitted after the training sequence in the present frame. The colored noise

at the receiver matched filter output is v½�Na:NþNc�1� ¼ Q�½�Na�Lq:NþNc�1þLq�, where

Q 2 RðNþNaþNcÞ�ðNþNaþNcþNqÞ is defined similarly to eQ. In fact

Q 2 RðNþNaþNcÞ�ðNþNaþNcþNqÞ is given by

Q ¼

qT 0 . . . 0

0 qT . . . 0

..

. ..
. . .

. ..
.

0 0 . . . qT

2666664

3777775 ð8Þ

The dimensions of the system so formed are (NþNaþNc)� (NaþNcþ 1) and for our

values of N¼ 704, NaþNcþ 1¼ 576, we have a 1280� 576 dimensional system that is

overdetermined and suitable for solution by the method of least-squares. One

complication to this approach is that the noise is no longer white. We include unknown

random data into the noise term, and this gives a correlated component to the noise,

where the data has been correlated by transmission through the channel. That is, the

filter which correlates the independent identically distributed data as it passes through

the channel is exactly the channel impulse response that we are trying to find. The

AWGN term is slightly correlated due to filtering by the receiver raised cosine filter. To

give the solution of this general linear problem, we will need to compute the covariance

matrix of the total noise contribution.

4.3. Covariance matrix computation

To compute the covariance matrix for the noise contribution

DhþQ�½�Na�Lq:NþNc�1þLq�, to the received vector y½�Na:NþNc�1�, it is advantageous to

rewrite the term Dh.
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We define the vector d 2 RNþ2ðNcþNaÞ by

d ¼ ½d�Nc�Na
, . . . , d�1, 01�N, dN, . . . , dNþNcþNa�1�

T

and the Toeplitz channel convolution matrix, H, where

H ¼ HðhÞ ¼ T ½h½�Na�, 0, . . . , 0�, ½ �h
T, 0, . . . , 0�T

� �
2 RðNþNaþNcÞ�ðNþ2ðNcþNaÞÞ

hT is the time-reversal of the channel vector,

�hT ¼ ½h½Nc�, . . . , h½1�, h½0�, h½�1�, . . . , h½�Na�� 2 RNcþNaþ1:

Specifically,

H ¼

�hT 0 . . . 0

0 �hT . . . 0

..

. ..
. . .

. ..
.

0 0 . . . �hT

266664
377775 ð9Þ

It is easy to verify that Dh¼Hd and E Hd ðHdÞT
� �

¼ �2
dHSHT, where E½ddT� ¼ �2

dS and

the selection matrix S 2 RðNþ2ðNcþNaÞÞ�ðNþ2ðNcþNaÞÞ is given by

S ¼

IðNcþNaÞ 0ðNcþNaÞ�N 0ðNcþNaÞ

0N�ðNcþNaÞ 0N 0N�ðNcþNaÞ

0ðNcþNaÞ 0ðNcþNaÞ�N IðNcþNaÞ

264
375 ð10Þ

Since Dh¼Hd, then we may rewrite (7) as

y½�Na:NþNc�1� ¼ AhþHdþQ�½�Na�Lq:NþNc�1þLq� ð11Þ

Here the total noise term, which combines the contribution of unknown data convolved

with the composite channel, Hd, with the AWGN filtered by the receive filter,

Q� �Na�Lq:NþNc�1þLq½ �, has covariance matrix C, given by

CovðwÞ ¼
1

2
E wwH
� �

¼
�2
d

2
HSHH þ

�2
�

2
QQH

¼
�2
d

2
HSHH þ

�2
�

�2
d

QQH

 !
since the data symbols, d[.] and the AWGN term �[.] are uncorrelated. Using the fact

that due to the choice of the transmitter and receiver pulse shaping, the product QQH is

very nearly equal to kqk2I, and �2
v ¼ �2

�kqk
2, then we can give the further approximation

CovðwÞ ’
�2
d

2
HSHH þ

�2
�

�2
d

I
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where I is the (NþNaþNc)� (NþNaþNc) identity matrix. This approximation is
often useful in simulations. Since the vector q is the root raised cosine function sampled
at zero and its zero crossings, then the matrix product QQH is a diagonal matrix with
diagonal entries kqk2 and with off-diagonal entries, which are the values of the
autocorrelation function of q evaluated at n, n 6¼ 0. These values are theoretically zero,
but due to the finite length of the vector q, may actually turn out to be small but nonzero.
This gives rise to the product being close to the identity, but not exactly equal to it.

We note that since H¼H(h) from (9), then Cov(w) is a function of h, i.e., Cov(w) is a
function of the channel impulse response vector that we are attempting to estimate.

We shall define

CðhÞ ¼ HSHH þ
�2
�

�2
d

QQH ð12Þ

so that CovðwÞ ¼ ð�2
d=2ÞCðhÞ. We often use the approximation

CðhÞ ’ HSHH þ
�2
�

�2
d

I

in simulations. Using the approximation QQH ’ kqk2I in practice is a judgement call as
to whether to added precision but higher complexity of using the exact value QQH is
preferable to use the approximation kqk2I, which offers a reduction in complexity,
but at a loss in precision. For hardware implementations, the approximation might
likely be used.

5. Problem statement

5.1. Problem description

The solution of the general linear model, (11), is given by the Gauss–Markoff Theorem,
[17–19], as

h ¼ ðATðCovðwÞÞ�1AÞ�1ATðCovðwÞÞ�1y ð13Þ

It is straightforward to check that the factor ð�2
d=2Þ contained in the expression for

Cov(w) actually cancels from (13), and we obtain

h ¼ ðATCðhÞ�1AÞ�1ATCðhÞ�1y ð14Þ

where C(h) is given by (12). We note that in solving (14) we are looking for a fixed point,
denoted by h0, of the mapping h 7!FðhÞ, where for each fixed vector of received
symbols, y, and each fixed convolution matrix of known transmitted training symbols,
A, then F: RL

!RL is given by (15).

5.2. Previous work

Our own previous approaches to finding the semi-blind BLUE channel estimate have
encompassed:

Case 1 In [15] and [16], an initial thresholded approximation denoted h(0) to h was
obtained via correlation of the training sequence with a stored copy of the training
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sequence at the receiver. (This processing already exists for timing acquisition.) Then
the iteration

hðkþ1Þ ¼ ðATCðhðkÞÞ�1AÞ�1ATCðhðkÞÞ�1y, k ¼ 0, 1, 2, . . .

was used to generate a sequence of approximations to the fixed point, hBLUE. Numerical
simulations indicated that for the problems which we were concerned with of channel
identification for HDTV transmission, two or three iterations were sufficient for an
error of khðkÞ � hBLUEk 	 10�6 (here h 2 R512). Theoretically, convergence of this
iteration to the unique fixed point, hBLUE, of the function F(h)¼Fy,A(h) is guaranteed if
kJFðhÞk < 1, where JF(h) denotes the Jacobian matrix of F [16]. This condition can be
satisifed if the initial approximation is sufficiently close to the fixed point.

Case 2 In [27], an approximate linear system was derived to give an approximate
solution to (14). This approximate linear system was derived by replacing C(h) by
C(hideal), on the right-hand side of (14) where hi ¼ 0, . . . , 0, 1, 0 . . . , 0½ �

T
2 RL, here the 1

appears in the 64th position in our case, to correspond to the position of the cursor in
the decision feedback equalizer (DFE) that we use. This approach has the added
advantage that the matrix (ATC(hideal)

�1A)�1ATC(hideal)
�1 may be computed offline

and stored at the receiver.

5.3. Present work

In the present work, we take the point of view that we may expand the vector-valued
function F(h)¼Fy,A(h)¼ (ATC(h)�1A)�1ATC(h)�1y of the vector variable, h, using
Taylor’s formula [28,29] about a fixed vector, hideal. The approximation to Fy,A(h) given
by Fy,A(hideal) in Case 2, above, is the zero-order Taylor approximation. We then derive
explicitly first-, second-, and third-order Taylor approximations to the BLUE CIR
estimate. The methods are attractive, since computation of the matrices involved may
be done offline and stored at the receiver. The only processing, which will be needed at
the reciever is that of computing ðhi � hidi Þ, where hi is not available, but is estimated as
the ith entry of the approximate channel vector obtained by correlation, and hidi ¼ 1,
if we use the ‘‘ideal’’ vector hid ¼ ½0, . . . , 0, 1|{z}

ith

, 0, . . . , 0�T, and then to form the

matrices used in obtaining the vectors given in (17) and (18).

5.4. Other semi-blind channel estimation approaches

Some other approaches to the problem of semi-blind channel estimation have
encompassed [5–8].

Medles et al. [5] uses a linear prediction for the received symbols, combined with the
observation (measurement) equation that is available. The linear prediction of the
received symbols gives the blind criterion, and a least-squares problem constitutes the
training-based part of the approach.

In [7], a semi-blind algorithm is used which is the regularized version of a least-
squares solution. Regularization (see, for example, [30,31]) is typically used as a
means to better condition ill-conditioned problems. In [7], the penalty added to the
least-squares cost function which constitutes the regularization term uses a priori
information about the channel. It is essentially a Bayesian approach, more
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accurately termed an ‘‘empirical Bayesian’’ approach by the authors as it fits the
parameters of the prior distribution using the empirical data itself. If our approach
could be adapted to be a Bayesian approach, this would add extra complexity to the
solution, as an additional term, C�1

h , the inverse of the covariance matrix of the CIR
vector, which is now viewed as a random variable would need to be computed to
give the Bayesian analoge to the least-squares solution [31],

hBayes ¼ ðATCðhÞ�1Aþ C�1
h Þ

�1ATCðhÞ�1y

In [8], a novel use of the subchannel response matching criterion is used [32]. This
technique uses ‘‘cross relations’’ between subchannel output pairs.

In [6] the approach given in [7] of linearly combining the training-based criterion
and the blind criterion, in the manner which is identical to the standard
regularization method, is extended. The authors comment that in [7] an asymptotic
argument was used to ‘‘fine tune’’ the regularization parameter by minimizing the
channel estimation error. This is done in [7] for the single-input multiple-output (SIMO)
case. In [6] the results are extended to the case of the Multiple-input multiple-output
channel in the context of a synchronized Code Division Multiple Access uplink (channel
estimation for the multiple channels in this case). Since, in this case, there are several
channels to be estimated in the uplink, then there is a vector of regularization
parameters (or tuning parameters) to be estimated. Lasaulce et al. [6] addresses this
problem.

Our algorithm is a semi-blind algorithm, using training data and transmission data
statistics, although it does not use a ‘‘regularization approach’’ which uses a linear
combination of training and blind cost functions, nor does it use a linear prediction for
the channel impulse response, nor do we use a subspace matching approach. Our
algorithm is a novel semi-blind approach, which uses an appropriately weighted least-
squares solution of an overdetermined least-squares system. This system has been
extended to be overdetermined and the solution incorporates knowledge of the statistics
of unknown transmission data.

6. Overview of Taylor series and approximations

For each fixed matrix of training data, A, and each vector of received values, y, we
define the function

FðhÞ ¼ Fy,AðhÞ ¼ ðATCðhÞ�1AÞ�1ATCðhÞ�1y ð15Þ

In [27], an approximate version of the iterative algorithm of [15] and [16] is described. In
the present work, we propose a more general framework within which the
approximation given in [27] would be the zero-order Taylor series approximation of
the function F(h), i.e., a constant approximation, F(hid), to the function F(h).

We consider the real part of the received data, denoted as vector y, and the real part
of the CIR vector, denoted as h. We use the vector-valued function of a real vector
variable version of the Taylor series [28,29], to develop a series approximation to the
function F(h) that gives the BLUE estimate for h, as given in (1).

Note that although our proposed algorithm does not fit within a Kalman filtering
framework, the process of linearization used in deriving the extended Kalman filter
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(EKF) is similar to that which we propose here, and the higher order approximations
that we use are similar to those used in obtaining higher order Kalman filter
approximations [33].

In fact, the use of the Taylor series is a standard tool of approximation, see, for
example, [34–36] to see instances of its use in applied engineering problems.

We describe the full Taylor formula for this function,

FðhÞ ¼ FðhidÞ þ
X
�j j�1

ðh� hidÞ
�
ð@=@hÞ�FðhidÞ ð16Þ

(where h ¼ [h1, . . . , hL]
T, hid ¼ ½hid1 , . . . , h

id
L �

T and � is a multi-index. The multi-index
notation is defined by

h� ¼
YL
i¼1

h�ii

where � ¼ ½�1, . . . ,�L�
T
2 RL. �j j denotes the 1� norm of �, that is �j j ¼

PL
i¼1 �ij j and

the derivative (@/@h)�F(hid) is defined by

ð@=@hÞ�FðhidÞ ¼
YL
i¼1

ð@=@hÞ�i

 !
FðhÞ

�����
h¼hid

We shall use either a first (denoted r1FðhidÞ) or second (denoted r2FðhidÞ) or third
(denoted r3FðhidÞ) order approximation. We do not describe the third-order
approximation explicitly in the interests of space. The first- and second-order
approximations are most easily implementable in practice, considering the tradeoff
between complexity and performance. We have,

FðhÞ 
 r1FðhidÞ � FðhidÞ þ ðhi � hidi Þð@=@hiÞFðhidÞ ð17Þ

FðhÞ 
 r2FðhidÞ � FðhidÞ þ ðhi � hidi Þð@=@hiÞFðhidÞ þ ðhi � hidi Þ
2
ð@2=@h2i ÞFðhidÞ ð18Þ

Note that the full linear approximation contains L first-order derivative terms. That is

FðhÞ 
 FðhidÞ þ
XL
i¼1

ðhi � hidi Þð@=@hiÞFðhidÞ

Similarly, the full second-order derivative approximation contains L first-order
derivative terms and (L2

þL)/2 second-order derivative terms. That is

FðhÞ 
 FðhidÞ þ
XL
i¼1

ðhi � hidi Þð@=@hiÞFðhidÞ þ
X
j�j¼2

ðhi � hidi Þ
�
ð@=@hiÞ

�FðhidÞ

We emphasize that the first- and second-order approximations (FOA and SOA,
respectively) that we use in our algorithms are not the full FOA and SOA as described
here, but merely a first-order approximation consisting of a single first-order derivative
with respect to the main tap weight and similarly a SOA, which contains only a single
first-order derivative and a single second-order derivative each with respect to the main
tap weight. The main tap weight will be described later, but it denotes the position of
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the main signal in the CIR vector. This insight is based partly on the desire to reduce the

complexity of the algorithms (by using fewer terms) and also on the empirical

observation that the performance of the algorithms improves when only a single

dominant tap-weight is used in the expansions. The main tap weight of the CIR vector is

identified in practice from the correlation estimate. The processing necessary to

compute the correlation estimate already exists for the purposes of timing

synchronization in the system, and so no extra complexity is added by using this.

7. Derivation of the linear and quadratic approximations

We define the matrix

ACðhÞ ¼ ATCðhÞ�1A
� ��1

ATCðhÞ�1
2 RL�ðNþL�1Þ: ð19Þ

Then F: RL
! RL defined by F : h 7!FðhÞ as defined in (15) is given by

FðhÞ ¼ ACðhÞy 2 RL:

We state the following Propositions, and give brief proofs.

PROPOSITION 1 For any matrix B ¼ BðhÞ 2 Rn�n, which depends on a vector parameter

h ¼ h1, . . . , hK½ � 2 RK such that there exists an open set U � RK, such that B is

nonsingular and differentiable on U, then, we have that for any i, 1� i�K, and for any

h 2 U,

@BðhÞ�1

@hi
¼ �BðhÞ�1 @BðhÞ

@hi
BðhÞ�1

ð20Þ

Proof Differentiate with respect to hi both sides of the identity B(h)�1B(h)¼ I, using

the product rule. g

Concerning C(h) we have,

PROPOSITION 2 C(h) is a differentiable function of h for all h 2 RNaþNcþ1. C(h) is a

positive definite matrix for all h 2 RNaþNcþ1, and consequently C(h) is invertible for all

h 2 RNaþNcþ1.

Proof The fact that C(h) is a differentiable function of h for all h 2 RNaþNcþ1 is clear

from the definition (12). C(h) is a positive definite matrix for all h 2 RNaþNcþ1 since for

all h 2 RNaþNcþ1 and for all nonzero x 2 RNaþNcþN we have

CðhÞx, x

 �

¼ HSHHx,x

 �

þ
�2
�

�2
d

QQHx, x

 �

¼ SHHx
�� ��2þ �2

�

�2
d

QHx
�� ��2

�
�2
�

�2
d

QHx
�� ��2

> 0 for all x 2 RNaþNcþN,x 6¼ 0
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follows since QH is of full column rank, and provided that �2
� 6¼ 0:We have used the fact

that S¼STS. Hence, C(h) is a positive definite matrix for all h 2 RNaþNcþ1 and

consequently is nonsingular for all h 2 RNaþNcþ1. C�1(h) is differentiable for all

h 2 RNaþNcþ1 follows from Lemma 3. g

Concerning differentiability of F we have

PROPOSITION 3 The function F given by (15) is differentiable for all h 2 RNaþNcþ1.

Proof Since C(h) is nonsingular and differentiable for all h 2 RNaþNcþ1, then

AtC(h)�1A is nonsingular and differentiable for all h 2 RNaþNcþ1, and so

(AtC(h)�1A)�1 is differentiable by Proposition 1. Hence, F is a product of differentiable

functions and is differentiable for all h 2 RNaþNcþ1. g

The partial derivatives of the function F are given by

PROPOSITION 4 For 1� i�L, we have

@FðhÞ

@hi
¼ ACðhÞ

@CðhÞ

@hi
CðhÞ�1

fAACðhÞ � Igy ð21Þ

Proof Differentiate, using the product rule, with respect to hi, the expression for

Ac(h)y and use Proposition 1 three times. The details are given in the Appendix. g

PROPOSITION 5 For 1� i, j�L, we have

@2FðhÞ

@hi@hj
¼

@ACðhÞ

@hj

@CðhÞ

@hi
þ ACðhÞ

@2CðhÞ

@hi@hj
�
@CðhÞ

@hi
CðhÞ�1 @CðhÞ

@hj

� �� �
� CðhÞ�1 AACðhÞ � I

� �
yþ ACðhÞ

@CðhÞ

@hi
CðhÞ�1 A

@ACðhÞ

@hj

� �
y ð22Þ

Proof Differentiate (21) with respect to hj, using the product rule and employing

Proposition 1. We omit the details. g

We omit the expression for the third derivatives, but it is straightforward to

compute from (22) above.

PROPOSITION 6 For 1� i�L, we have

@CðhÞ

@hi
¼ �2

dHðhÞS
@HðhÞT

@hi

	 

þ �2

d

@HðhÞ

@hi

	 

SHðhÞT ð23Þ

Proof Differentiating (12) with repect to hi gives the required result. g

PROPOSITION 7 For 1� i, j�L we have

@2CðhÞ

@hi@hj
¼ �2

d

@HðhÞ

@hj

	 

S

@HðhÞT

@hi

	 

þ �2

d

@HðhÞ

@hi

	 

S

@HðhÞT

@hj

	 

ð24Þ

Proof Differentiating (23) with repect to hj, and noting that

@2HðhÞT=@hi@hj ¼ 0

for any i, j, gives the required result. g
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PROPOSITION 8 For all derivatives of order 3 and higher, we have

@

@h

	 
�

CðhÞ � 0ðNþL�1Þ�ðNþL�1Þ 8�, �j j � 3

Proof Differentiating (24) with repect to hk, and noting that

@2HðhÞT

@hi@hj
¼ 0

for any i, j, gives the required result. g

We use approximations (17) and (18) where we do not use a full linear approximation,
including all terms in the linear Taylor series approximation. As commented before, we
only use a linear approximation using the dominant term, which for us is a linear
approximation where we have differentiated with respect to the main tap weight.
A similar comment holds for both the quadratic and cubic approximations: we only use a
single second-order term and a single third-order term in the SOA and third-order
approximations.

8. Algorithm

8.1. Input

Received vector y;
Training sequence to form data matrix A;
Identify the position of the main tap weight of the CIR vector from the correlation

estimate (processing exists to compute the correlation estimate for timing
synchronization).

8.2. Stored at receiver

Zero order approximation (ZOA) matrix (19)

ACðhidÞ ¼ ðATCðhidÞ
�1AÞ�1ATCðhidÞ

�1
2 RL�ðNþL�1Þ ð25Þ

First-order approximation matrix 2 RL�ðNþL�1Þ for first-order algorithm (see (21)
and note that @FðhÞ=@hi ¼ ðð@ACðhidÞ=@hiÞyÞ

@ACðhidÞ

@hi
¼ ACðhidÞ

@CðhidÞ

@hi
CðhidÞ

�1
fAACðhidÞ � Ig ð26Þ

Second-order approximation matrix 2 RL�ðNþL�1Þ, if second-order algorithm is used
(see (22) and note that ð@2FðhÞ=@hi@hjÞ ¼ ðð@2ACðhÞ=@hi@hjÞy)

@2ACðhidÞ

@h2i
¼

@ACðhidÞ

@hi

@CðhidÞ

@hi
þ ACðhidÞ

@2CðhidÞ

@h2i
�
@CðhidÞ

@hi
CðhidÞ

�1 @CðhidÞ

@hi

� �� �
� CðhidÞ

�1
fAACðhidÞ � Ig þ ACðhidÞ

@CðhidÞ

@hi
CðhidÞ

�1 A
@ACðhidÞ

@hi

� �
2 RL�ðNþL�1Þ ð27Þ

Third-order approximation matrix if third-order algorithm is used (not given here).

318 C. Pladdy et al.



8.3. Real-time processing

Let hcorr ¼ ½hcorr1 , hcorr2 , . . . hcorrL �
T
2 RL denote the correlation approximation to the

channel which is available from timing acquisition. Then compute the scalar value

hcorri � hidi ¼ hcorri � 1 when the ideal channel used is hid ¼ ½0, . . . ,

0, 1|{z}
ithposition

, 0, . . . , 0�T 2 RL. Use this, together with (25) and (26), to form the matrix

ðr1ACÞðhidÞ ¼ ACðhidÞ þ ðhcorri � hidi Þ
@ACðhidÞ

@hi
ð28Þ

to be used in the first-order algorithm. (Complexity is L� (NþL� 1)

multiplications and L� (NþL� 1) additions.) Similarly, using (25), (26) and (27),

form the matrix

ðr1ACÞðhidÞ ¼ ACðhidÞ þ ðhcorri � hidi Þ
@ACðhidÞ

@hi
þ ðhcorri � hidi Þ

2 @
2ACðhidÞ

@h2i
ð29Þ

(Complexity is 2�L� (NþL� 1) multiplications and 2�L� (NþL� 1) additions.)

We omit the third-order approximation matrix in the interests of space.
Compute the approximations to hBLUE

r0FðhidÞ ¼ ðr0ACðhidÞÞy ZOA, identical to that in ½27�

r1FðhidÞ ¼ ðr1ACðhidÞÞy FOA using ð28Þ

r2FðhidÞ ¼ ðr2ACðhidÞÞy SOA using ð29Þ

r3FðhidÞ ¼ ðr3ACðhidÞÞy third-order approximation,

not explicitly given here

(Each takes (NþNaþNc)� (NaþNcþ 1) multiplications.)

9. Simulation results

The channels used are known as Brazil channels 2, 3, 5, 7, 8, and 11. They appear in the

HDTV literature [9], and originate in field test data gathered in Brazil. All of the

channels are pictured in figure 1. Channels 7 and 8 are described fully in table 1, giving

delays in symbols and the relative path gains. In the interests of space, we only describe

channels 7 and 8 in this manner.
In tables 2 and 3, we show results for the channels 2, 3, 7, 8, and 11 at 18 and 28 dB

and contrast the results of our approximations with the correlation estimate. We use

simulated 8-VSB data passed through the channels at 18 dB and 28 dB AWGN level.

The table gives the 2-norm of the error, kh� ĥk where ĥ is the channel estimate and h is

the true channel. The error in the correlation estimate is given in the last column,

labeled as ‘‘Correlation’’. The errors in the ZOA, FOA and SOA, are given in the

previous columns. The ZOA is the same as the approximation considered in [27]. There

is often improvement of the FOA, and SOA over the ZOA and over the correlation

estimate. This is particularly true for the more ‘‘challenging’’ channels, 7 and 8 and to a
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Figure 1. Channels 2, 3, 5, 7, 8, and 11.

Table 1. Brazil channels 7 and 8.

Name Delays (in symbols) Path gain (relative)

Brazil-7 0 1
5.16587424 0.65575
22.27783266 0.75697
31.2104902 0.87482
61.45237898 1.01565
62.20573564 0.7379

Brazil-8 0 1
10.762238 1
21.524476 1

Table 2. 2-norm of error.

Channel (dB) Exact Zero First Second Correlation

2 18 0.1293 0.1776 0.1580 0.1570 0.8967
2 28 0.0865 0.1206 0.1179 0.1211 0.8748
3 18 0.1206 0.1232 0.1224 0.1255 0.8838
3 28 0.0818 0.0766 0.0869 0.0928 0.8678
7 18 0.2406 0.4839 0.4070 0.3861 0.8007
7 28 0.1021 0.4331 0.3598 0.3398 0.7837
8 18 0.1737 0.2830 0.2664 0.2665 0.8805
8 28 0.0781 0.2289 0.2211 0.2244 0.8669
11 18 0.1264 0.1365 0.1353 0.1380 0.8827
11 28 0.0837 0.0956 0.1024 0.1069 0.8680
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lesser extent 5. The exact solution is computed using prior knowledge of the true CIR

vector to form the covariance matrix C(h) and compute the vector

hBlue ¼ ATCðhÞ�1A
� ��1

ATCðhÞ�1y

This, of course, is the CIR vector which we are trying to estimate, and so knowledge

of it is not available. We include the exact solution as a benchmark for the error to

approach for the other methods of estimation.
We also show the norm of the error, kh� ĥk where ĥ is the channel estimate and h is

the true channel for channels 2, 3, 5, 7, 8, and 11 at 20, 22, 24, and 26 dB input SNR. We

use simulated 8-VSB symbols passed through the channel at 20, 22, 24, and 26 dB

AWGN level. We use the approximations as given in (17) and (18) where i¼ 64, which

is the position of the main tap in the DFE that we use (this corresponds to zero delay in

symbols for Brazil-D in table 2), where @F (h)/@hi is given by (21) and @2FðhÞ=@h2i is given
by (22), with i¼ j.

9.1. Complexity

We give the number of multiplications needed for each of our algorithms; that is the

ZOA, FOA and SOA. For ZOA, this is the numbers of multiplications needed to form

the product of the matrix on line (25) with the vector y of received data. For FOA and

SOA, this is the number of multiplications needed to form the matrices on lines (28)

Table 3. 2-norm of error.

Channel (dB) Exact Zero First Second

2 20 0.1139 0.1578 0.1434 0.1438
2 22 0.1029 0.1434 0.1332 0.1346
2 24 0.0952 0.1331 0.1261 0.1283
2 26 0.0900 0.1258 0.1212 0.1240
3 20 0.1064 0.1050 0.1083 0.1126
3 22 0.0963 0.0925 0.0989 0.1040
3 24 0.0894 0.0844 0.0928 0.0984
3 26 0.0848 0.0794 0.0891 0.0949
5 20 0.1243 0.1984 0.1774 0.1750
5 22 0.1079 0.1869 0.1681 0.1664
5 24 0.0960 0.1794 0.1622 0.1609
5 26 0.0875 0.1746 0.1585 0.1575
7 20 0.1967 0.4627 0.3877 0.3674
7 22 0.1627 0.4493 0.3753 0.3553
7 24 0.1366 0.4410 0.3675 0.3476
7 26 0.1168 0.4360 0.3627 0.3428
8 20 0.1404 0.2612 0.2484 0.2499
8 22 0.1157 0.2469 0.2366 0.2390
8 24 0.0980 0.2378 0.2289 0.2319
8 26 0.0859 0.2322 0.2241 0.2273
11 20 0.1109 0.1195 0.1218 0.1255
11 22 0.0999 0.1083 0.1130 0.1172
11 24 0.0923 0.1015 0.1075 0.1120
11 26 0.0871 0.0976 0.1042 0.1088
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(FOA), and (29) (SOA) and the number of multiplications to compute the matrix vector
product of these matrices with the vector y of received data.

We contrast this with the complexity of computing the Correlation estimate, as given
by equation (5) and computing the exact solution, as given by equation (14).

Recall that L¼NaþNcþ 1 (used from section 6 onwards) is the predetermined
channel length (L¼ 512 is commonly used in HDTV applications), and that N is the
length of the training data (N¼ 704 or 728 for the 8-VSB modulation system for HDTV
applications.) Recall from (5) that hcorr ¼ Ây½�Na:NcþN�1� which takes L� (LþN� 1)
multiplicaitons to compute.

For the exact solution, we must solve (13), or more accurately, solve the equation
(11) that preceded this, either by explicit matrix inversion or more likely, by some
indirect (iterative) method or direct method that does not explicitly compute the
inverse matrix that appears on the right-hand side of (13). We are even simplifying
the situation which we encounter in (13), since we are overlooking the fact that the
co-variance matrix Cov(w) is not available to us. This covariance matrix must be
approximated somehow to give the exact solution. Overlooking this fact for now,
the most naive approach to the issue of complexity in solving the exact problem
needs two matrix inversions (each are O((NþL� 1)3) and O((L)3)) and then a
further L(NþL� 1) multiplications to form the matrix vector product on the right-
hand side of (13). Hence computing the exact solution, overlooking the fact that the
true covariance matrix Cov(w) is not available, is O((NþL� 1)3þL3). Iterative
methods to solve the system could be devised, but it is not trivial to do due to the
structure of the equation (11), and the complexity is likely to still be O(L2) or worse
for methods such as the conjugate gradient method (table 4). However, this is an
aspect of the problem which could be worked on further.

10. Conclusions

Our algorithm gives an approximation to the BLUE CIR which is attained at a great
reduction in computational complexity over iteratively computing the BLUE CIR for
the specific channel. The extent of received data used in the data vector is sufficiently
large for the purpose of forming an overdetermined system, that the effects of unknown
data convolved with the CIR must be incorporated into the data covariance matrix used
to weight the LS solution appropriately. We approximate the nonlinear function of the
CIR that gives the BLUE CIR. The approximations that we use are given by the Taylor
series representation of the function. We use a FOA (linear), SOA (quadratic), and
third-order (cubic) approximation. Each approximation used is not the full

Table 4. Complexity of the algorithms.

Complexity

ZOA O(L(NþL� 1))
FOA O(2L(NþL� 1))
SOA O(3L(NþL� 1))
Correlation O(L(NþL� 1))
Exact solution O((NþL� 1)3þL3)
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approximation given by the Taylor series, but is an approximation around the single
dominant tap in the CIR vector. This approximation is determined by empirical testing,
and is preferable to full approximations in each case, as the complexity is reduced.

Simulation results show improvements in the estimates over the correlation estimate
(for example, see [20–26] for its use), and the ZOA, which has been previously used [27].
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Appendix

Proof of Proposition 5

Differentiate, using the product rule, with respect to hi, the expression for AC(h)y and

use Proposition 1 three times. That is, we have,
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@hi
¼

@

@hi
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� �
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which gives the result.
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