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Summary Determination of wheat flour quality parameters, such as protein, moisture, dry mass by wet chemistry

analyses takes long time. Near infrared spectroscopy (NIR) coupled with multivariate calibration offers a

fast and nondestructive alternative to obtain reliable results. However, due to the complexity of the spectra

obtained from NIR, some wavelength selection is generally required to improve the predictive ability of

multivariate calibration methods. In this study, two different wheat data sets are investigated with the aim of

establishing successful calibration models using NIR spectra of wheat samples. The first data set (material 1)

was obtained from the ftp address (ftp://ftp.clarkson.edu/pub/hopkepk/Chemdata/) and contained 100 NIR

spectra of wheat of which wet chemical analysis of protein and moisture content were done with reference

methods. The second data set (material 2) contained 176 spectra and was downloaded from http://

www.spectroscopynow.com/Spy/basehtml/SpyH/1,1181,2-1-2-0-0-newsdetail-0-74,00.html. This wheat data

set was given with the quality parameters, such as protein content, moisture content, other residues, dry

mass, protein content in dry mass and hardness that were determined previously. Multivariate calibration

models generated with genetic inverse least squares method demonstrated very good prediction results for the

parameter mentioned here. Overall, the average per cent recoveries (APR) ranged between 99.23% and

100.34% with a standard deviation (SD) ranging from 0.34 to 3.15 for all the parameters investigated, except

hardness. The APR value of hardness was 103.32 with the SD of 14.97.
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Introduction

Total protein content of wheat flour is one of the most
important factor in determining the quality and market
value (Wesley et al., 2001). However, there are other
parameters such as moisture and hardness that also play
a primary role in the end use of wheat. The conventional
determinations of these parameters often requires large
amount of samples and are generally time-consuming
and expensive. The reference methods most commonly
used in grain analysis are the Kjeldahl method and the
combustion nitrogen analysis (CNA) method. A simple
thermogravimetric analysis method is accepted as the
official method of determining the moisture content of
wheat. There are several United States Department of
Agriculture approved protocols for moisture and

protein content determination of wheat (http://www.
usda.gov). Determining the hardness of wheat with a
number of different methods was described in literature
(Famera et al., 2004).
Near infrared (NIR) spectroscopy (McClure, 1994)

has become a popular method for simultaneous chem-
ical analysis and is studied extensively in a number of
different fields, such as process monitoring (DeThomas
et al., 1994), biotechnology (Arnold et al., 2000) and the
pharmaceutical industry (Tran et al., 2004) because of
the potential for on-line, nondestructive and noninva-
sive instrumentation. Traditionally, NIR spectroscopy
has found its widest application area in agriculture and
food industry (Puchwein & Eibelhuber, 1989; Sorvani-
emi et al., 1993; Hareland, 1994; Kalivas, 1997; Delwi-
che, 1998; McCaig, 2002; Miralbés, 2004; Ferrioa et al.,
2005). The NIR portion of the electromagnetic spectrum
covers the range from 780 to 2500 nm and most of the
absorption bands observed in this region are because of
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overtones and combinations of the fundamental mid-IR
molecular vibrational bands. Although all the funda-
mental vibrational modes can have overtones, the most
commonly observed bands arise from the C–H, O–H
and N–H bonds in the molecules.
Advances in computers and automation technology

have made today’s instruments incredibly fast, so they
can produce hundreds of spectra in a few minutes for a
given sample that contains multiple components. Unfor-
tunately, univariate calibration methods are not suitable
for this type of data, as they require an interference-free
system. Thanks to the chemometrics, multivariate cal-
ibration methods make it possible to relate instrument
responses that consist of several predictor variables to a
chemical or physical property of a sample. Several
classical multivariate calibration methods have been
developed (Lindberg et al., 1983; Geladi & Kowalski,
1986; Haaland & Thomas, 1988; Wentzell et al., 1997) in
the last couple of decades for the analysis of complex
chemical mixtures. The choice of the most suitable
calibration method is very important in order to
generate calibration models with high predictive ability
for future samples. In some cases, conventional methods
may not offer a satisfactory solution to a given problem
due to the complexity of the data and it may be
necessary to apply some sort of variable selection. There
have been many mathematical methods of variable
selection (Lindgren et al., 1994; Centner et al., 1996;
Forina et al., 1999), and genetic algorithm is one of
them that offers a fast and effective solution for large-
scale problems (Leardi et al., 1992; Lucasius & Kate-
man, 1993; Hörchner & Kalivas, 1995).
Inverse least squares (ILS) is based on the inverse of

Beer’s Law where concentrations of an analyte are
modelled as a function of absorbance measurements.
Genetic inverse least squares (GILS) is the modified
version of original ILS methods in which a small set of
wavelengths are selected from a full spectral data matrix
and evolved to an optimum solution using a genetic
algorithm (GA) and has been applied to a number of
wavelength selection problems (Özdemir & Dinç, 2004;
Özdemir & Öztürk, 2004; Özdemir, 2005). GAs are
nonlocal search and optimisation methods that are
based upon the principles of natural selection (Hibbert,
1993; Paradkar & Williams, 1997; Pizarro et al.,
1998; Mosley & Williams, 1998; Özdemir & Williams,
1999).
In this work, GILS method, a multivariate calibration

method based on a GA, was tested with the aim of
establishing calibration models that have a high pre-
dictive ability for theNIR spectroscopic determination of
several chemical and physical parameters of two wheat
data sets. The first data set (material 1) was obtained
from the ftp address ftp://ftp.clarkson.edu/pub/
hopkepk/Chemdata/ and the second data set (material 2)
was downloaded from http://www.spectroscopynow.

com/Spy/basehtml/SpyH/1,1181,2-1-2-0-0-news_detail-
074,00.html.

Genetic inverse least squares

The major drawback of the classical least squares (CLS)
method is that all of the interfering species must be
known and their concentrations included in the model.
This need can be eliminated by using the ILS method,
which uses the inverse of Beer’s Law. In the ILS method,
concentration of a component is modelled as a function
of absorbance measurements. Because modern spectro-
scopic instruments are very stable and provide excellent
signal-to-noise (S/N) ratios, it is believed that the
majority of errors lie in the reference values of the
calibration sample, and not in the measurement of their
spectra. In fact, in many cases the reference data of the
calibration set is generated from another analytical
technique that already has its inherent errors, which
might be higher than those of the spectrometer (e.g.
Kjeldahl protein analysis used to calibrate NIR spectra).
The ILS model for m calibration samples with n

wavelengths for each spectrum is described by:

C ¼ APþ EC ð1Þ
where C is the m · l matrix of the component concen-
trations, A is the m · n matrix of the calibration spectra,
P is the n · l matrix of the unknown calibration
coefficients relating l component concentrations to the
spectral intensities and EC is the m · l matrix of errors
in the concentrations not fit by the model. In the
calibration step, ILS minimises the squared sum of the
residuals in the concentrations. The biggest advantage
of ILS is that eqn (1) can be reduced for the analysis of
a single component at a time as analysis is based on an
ILS model, which is invariant with respect to the
number of chemical components included in the analy-
sis. The reduced model is given as:

c ¼ Apþ ec ð2Þ
where c is the m · 1 vector of concentrations for the
component that is being analysed, p is the n · 1 vector
of calibration coefficients and ec is the m · 1 vector of
concentration residuals not fit by the model. During the
calibration step, the least-squares estimate of p is:

p̂ ¼ ðA0AÞ�1A0 � c ð3Þ
where p̂ is the estimated calibration coefficient. Once p̂ is
calculated, the concentration of the analyte of interest
can be predicted with the equation that follows:

ĉ ¼ a0 � p̂ ð4Þ
where ĉ is the scalar estimated concentration and a is
the spectrum of the unknown sample. The ability to
predict one component at a time without knowing the
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concentrations of interfering species has made ILS one
of the most frequently used calibration methods.
The major disadvantage of ILS is that the number of

wavelengths in the calibration spectra should not be
more than the number of calibration samples. This is a
big restriction as the number of wavelengths in a
spectrum will generally be much more than the number
of calibration samples and the selection of wavelengths
that provide the best fit for the model is not a trivial
process. Several wavelength selection strategies, such as
stepwise wavelength selection and all possible combina-
tion searches, are available to build an ILS model, which
fits the data best.
GA are global search and optimisation methods based

upon the principles of natural evolution and selection as
developed by Darwin. Computationally, the implemen-
tation of a typical GA is quite simple and consists of five
basic steps including initialisation of a gene population,
evaluation of the population, selection of the parent
genes for breeding and mating, crossover and mutation
and replacing parents with their offspring. These steps
have taken their names from the biological foundation
of the algorithm.
GILS is an implementation of a GA for selecting

wavelengths to build multivariate calibration models
with reduced data set. GILS follows the same basic
initialise/breed/mutate/evaluate algorithm as other GAs
to select a subset of wavelengths, but is unique in the
way it encodes genes. A gene is a potential solution to a
given problem and the exact form may vary from
application to application. Here, in GILS method, the
term ‘gene’ is used to describe the collection of instru-
mental responses, such as the absorbance values at
certain wavelengths determined randomly at the wave-
length range used to collect the spectrum (refer eqn 1).
In other words, a gene is basically a subspectrum sample
at a few wavelengths of the full spectrum. The term
‘population’ is used to describe the collection of
individual genes in the current generation. The number
of genes in a population must be an even number as it
will be explained later.
In the initialisation step, the first generation of genes

is created randomly with a fixed population size.
Although random initialisation helps to minimise bias
and maximise the number of possible recombinations,
GILS is designed to select initial genes in a somewhat
biased random fashion in order to start with genes better
suited to the problem than those that would be
randomly selected. Biasing is done with a correlation
coefficient by plotting the predicted results of initial
population against the actual component concentra-
tions. The size of the gene pool is a user-defined even
number in order to allow breeding of each gene in the
population. It is important to note that the larger
the population size, the longer the computation time.
The number of instrumental responses in a gene is

determined randomly between a fixed low limit and high
limit. The lower limit was set to 2 in order to allow
single-point crossover whereas the higher limit was set to
eliminate overfitting problems and reduce the computa-
tion time. Once the initial gene population is created, the
next step is to evaluate and rank the genes using a fitness
function, which is the inverse of the standard error of
calibration (SEC).
The third step is where the basic principle of natural

evolution is put to work for GILS. This step involves the
selection of the parent genes from the current popula-
tion for breeding using a roulette wheel selection method
according to their fitness values. The goal is to give a
higher chance to those genes with high fitness so that
only the best performing members of the population will
survive in the long run, and will be able to pass their
information to the next generations. Because of the
random nature of the roulette wheel selection method,
however, genes with low fitness values will also have
some chance to be selected. Also, there will be genes that
are selected multiple times and some genes will not be
selected at all and will be thrown out of the gene pool.
After the selection procedure is completed, the selected
genes are allowed to mate top–down in pairs whereby
the first gene mates with the second gene and the third
one with the fourth one and so on as illustrated in the
following example:

Parents

S1 ¼ ðA347;A251;#A379;A218Þ ð5Þ

S2 ¼ ðA225;A478;#A343;A250;A451;A358;A231;A458Þ ð6Þ
The points where the genes are cut for mating are
indicated by #.

Offspring

S3 ¼ ðA347;A251;A343;A250;A451;A358;A231;A458Þ ð7Þ

S4 ¼ ðA379;A218;A225;A478Þ ð8Þ

where A347 represents the instrument response at the
wavelength given in subscript, S1 and S2 represent
the first and second parent genes and S3 and S4 are the
corresponding genes for the offspring. Here, the first
part of S1 is combined with the second part of the S2 to
give the S3; likewise, the second part of the S1 is
combined with the first part of the S2 to give S4. This
process is called the single-point crossover and is
common in GILS. Single-point crossover will not
provide different offsprings if both parent genes are
identical, which may happen in roulette wheel selection,
when both genes are broken at the same point. Also,
note that mating can increase or decrease the number of
instrument responses in the offspring genes. After
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crossover, the parent genes are replaced by their
offsprings and the offsprings are evaluated. The ranking
process is based on their fitness values following the
evaluation step. Then, the selection for breeding/mating
starts all over again. This is repeated until a predefined
number of iterations are reached.
Mutation which introduces random deviations into

the population was also introduced into the GILS
during the mating step at a rate of 1% as is typical in
GA. This is usually done by replacing one of the
responses in an existing gene with a randomly selected
new one. Mutation allows the GR to explore the search
space and incorporate new material into the genetic
population. It helps keep the search moving and can
eject GILS from a local minimum on the response
surface. However, it is important not to set the mutation
rate too high as it may keep the GA from being able to
exploit the existing population. Also, the GILS method
is an iterative algorithm and therefore, there is a high
possibility that the method may easily overfit the
calibration data so that the predictions for independent
sets might be poor. To eliminate possible overfitting
problems, cross validation is used in which one spectrum
is left out of the calibration set and the model is
constructed with m)1 sample. Then, this model is used
to predict the concentration of the left out sample. This
process is continued until all samples are left out at least
once in each iteration. As long as the number of spectra
in the calibration set is not too large, cross validation is

an effective method of eliminating overfitting. If the
number of calibration spectra is very large, then the
GILS method has the option of half validation
approach in which the half of the spectra in the
calibration set is used to validate the model in each
iteration.
In the end, the gene with the lowest SEC (highest

fitness) is selected for the model building and this
model is used to predict the concentrations of com-
ponent analysed in the prediction (test) sets. The
success of the model in the prediction of the test sets
is evaluated using standard error of prediction (SEP).
Because random processes are heavily involved in
GILS as in the entire GA, the program has been set
to run several times for each component in this study.
The best run (i.e. the one generating the lowest SEC
for the calibration set and at the same time producing
SEP for prediction sets that are in the same range
with the SEC) is subsequently selected for evaluation
and further analysis. The termination of the algorithm
can be done in many ways. The easiest way is to set a
predefined iteration number for the number of breed-
ing/mating cycles.
GILS has some major advantages over classical

univariate and multivariate calibration methods. First
of all, it is quite simple in terms of the mathematics
involved in the model building and prediction steps, but
at the same time it has the advantages of the multi-
variate calibration methods with a reduced data set as it
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Figure 1 Near infrared (NIR) diffuse

reflectance spectra of ten wheat samples:

(a) from material 1 and (b) from material 2.
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uses the full spectrum to extract genes. By selecting a
subset of instrument responses, it is able to eliminate
nonlinearities that might be present in the full spectral
region.

Materials and methods

Two different NIR spectra of wheat data sets are
investigated. Material 1 was obtained from the ftp
address (ftp://ftp.clarkson.edu/pub/hopkepk/Chemda-
ta/) and contained 100 NIR spectra of wheat of which
wet chemical analysis of protein and moisture content

were done with reference methods. The NIR spectra
were recorded in diffuse reflectance mode as log (1/R)
from 1100 to 2500 nm at 2-nm intervals and eighty-
seven of them were used as described in Kalivas (1997).
The composition of calibration and prediction sets were
also kept the same as given in Kalivas (1997) with fifty

Table 1 Reference values of protein and moisture determined previ-

ously in prediction sets 1 and 2 of material 1

Sample

number

Prediction set 1 Prediction set 2

Protein as

is (w/w %)

Moisture as

is (w/w %)

Protein as

is (w/w %)

Moisture as

is (w/w %)

1 11.36 12.70 13.01 12.96

2 10.40 13.13 12.58 13.14

3 12.23 13.11 11.93 12.80

4 11.65 12.79 10.78 12.99

5 11.81 13.16 11.06 13.16

6 12.48 13.46 10.36 13.57

7 13.72 13.34 11.78 13.14

8 13.08 12.94 14.02 13.14

9 11.72 16.68 11.09 16.94

10 11.23 16.50 11.75 16.33

11 11.08 16.19 11.13 16.12

12 10.26 15.99 10.86 16.31

13 11.42 15.88 11.24 16.31

14 11.27 15.51 11.48 15.80

15 10.90 15.59 11.85 15.36

16 10.98 15.18 11.07 15.34

17 11.98 15.11 11.05 15.69

18 13.15 15.62 10.74 15.65

19 11.77 15.78 10.90 15.56

20 11.87 15.68 11.64 15.10

Table 2 Predicted protein and moisture content in the prediction sets 1

and 2 of material 1 along with standard error of calibration (SEC),

standard error of prediction (SEP), average percent recoveries (APR)

and standard deviations (SD)

Sample

number

Prediction set 1 Prediction set 2

Protein as

is (w/w %)

Moisture as

is (w/w %)

Protein as

is (w/w %)

Moisture as

is (w/w %)

1 11.77 12.83 12.24 13.30

2 9.55 13.16 12.21 13.36

3 12.35 12.72 12.53 12.69

4 11.46 13.04 11.30 12.72

5 11.88 13.13 10.54 12.98

6 12.83 13.31 10.43 13.38

7 13.88 13.24 11.40 12.96

8 13.05 12.98 13.76 13.20

9 11.86 16.84 11.33 16.95

10 11.72 16.47 11.89 16.22

11 11.25 16.05 11.32 15.48

12 10.58 15.63 11.13 16.21

13 11.23 16.23 11.12 16.16

14 11.08 15.80 11.06 16.13

15 11.25 15.69 11.25 15.47

16 10.84 15.31 10.96 15.75

17 12.22 15.14 11.15 15.72

18 12.41 15.24 10.74 15.62

19 11.84 15.96 10.76 15.95

20 12.12 15.58 11.23 15.15

SEC 0.08 0.12 0.08 0.12

SEP 0.34 0.21 0.37 0.25

APR 100.34 99.99 99.23 99.99

SD 3.09 1.45 3.15 1.72
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and (b) protein content of wheat samples

in material 1.
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Figure 3 Frequency distribution of genetic

inverse least squares (GILS)-selected wave-

lengths on the near infrared (NIR) diffuse

reflectance spectra of material 1: (a) protein

and (b) moisture.

Table 3 Reference values of protein, moisture

and others (after subtracting the amount of

protein and moisture from the raw sample),

dry mass of samples (after removing the

moisture from sample), protein in dry mass

and hardness of wheat determined previously

in prediction set of material 2

Sample

number

Protein as is

(w/w %)

Moisture as is

(w/w %)

Others as is

(w/w %)

Dry mass

(w/w %)

Protein in dry

mass (w/w %) Hardness

1 9.83 11.10 77.58 88.90 8.74 56.6

2 10.94 12.76 74.93 87.24 9.55 77.1

3 11.07 13.67 73.75 86.33 9.56 59.7

4 11.27 13.17 74.17 86.83 9.79 54.6

5 11.60 14.61 72.30 85.39 9.91 51.1

6 11.89 10.77 75.85 89.23 10.61 45.5

7 12.19 11.53 74.61 88.47 10.78 59.5

8 12.55 14.26 71.72 85.74 10.76 50.1

9 12.95 13.45 72.25 86.55 11.21 59.4

10 13.42 10.95 73.96 89.05 11.95 83.8

11 13.66 11.09 73.36 88.91 12.14 67.3

12 13.78 13.52 71.41 86.48 11.92 65.1

13 13.95 13.58 70.84 86.42 12.06 79.7

14 14.02 10.64 73.73 89.36 12.53 30.1

15 14.36 11.15 72.68 88.85 12.76 72.7

16 14.45 10.73 73.15 89.27 12.90 95.3

17 15.81 10.59 73.09 89.41 13.95 24.7

18 14.68 13.56 70.14 86.44 12.69 80.2

19 14.84 11.28 72.11 88.72 13.16 39.5

20 14.99 11.25 72.04 88.75 13.30 22.0

21 15.16 12.87 70.39 87.13 13.21 30.9

22 15.22 12.79 70.41 87.21 13.28 23.2

23 15.40 10.14 72.59 89.86 13.84 28.9

24 15.58 13.62 69.20 86.38 13.46 24.9

25 15.87 10.84 71.55 89.16 14.15 48.2

26 15.95 10.82 71.66 89.18 14.22 88.2
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samples in calibration set and twenty samples in each of
the two prediction sets in order to be able to compare
the results in literature.
Material 2 was downloaded from http://www.spectr-

oscopynow.com/Spy/basehtml/SpyH/1,1181,2-1-2-0-0-
newsdetail-0-74,00.html and contained 176 NIR diffuse
reflectance spectra in the wavelength rage from 1000 to
2500 nm at 10-nm intervals. This wheat data set was
given with the quality parameters like protein content,
moisture content, other residues, dry mass, protein
content in dry mass and hardness that were determined
previously. Here, the data set was organised in a way, so
that the first 150 samples assigned into calibration set
and the remaining twenty-six samples were reserved for
prediction set as the data given at the previous website.
These samples were assigned into calibration and
prediction sets with the constraints that the values of
all parameters for prediction set embedded in the
calibration range.
The GILS method was written in MATLAB pro-

gramming language using Matlab 5.3 (MathWorks Inc,
Natick, MA).

Results and discussion

The wheat data sets used in this study were selected to
demonstrate the applicability of NIR spectroscopy
coupled with genetic multivariate calibration for the
determination of several physical and chemical quality
parameters using NIR diffuse reflectance spectra of
wheat samples. Figs 1a and b show the ten diffuse
reflectance spectra as log (1/R) between 1000 and
2500 nm wavelength range for the materials 1 and 2,
respectively. Because of structural similarities, the spec-
tral features of these wheat samples are very much alike
and only minute differences exist in some parts of the
whole spectrum. Throughout the multivariate calibra-
tion process, it is expected that these differences will
reveal the information necessary to build successful
calibration models otherwise almost impossible with
univariate calibration methods.
The GILS method was first applied to the material 1

and calibration models for moisture and protein content
were prepared. The calibration models were prepared
with fifty spectra and then these models were tested with

Table 4 Predicted properties along with

standard error of calibration (SEC), standard

error of prediction (SEP), average percent

recoveries (APR) and standard deviations

(SD) in the prediction set for the six para-

meters investigated in material 2

Sample

number

Predicted

protein as

is (w/w %)

Predicted

moisture as

is (w/w %)

Predicted

others as

is (w/w %)

Predicted

dry mass

(w/w %)

Predicted protein

in dry mass

(w/w %)

Predicted

hardness

1 9.78 11.22 77.68 88.39 8.78 53.84

2 10.32 12.66 75.37 87.56 9.22 79.08

3 11.24 13.82 73.59 86.36 9.88 64.24

4 10.96 13.00 74.56 86.78 9.67 45.35

5 11.70 14.33 72.18 85.56 10.04 52.16

6 11.78 10.86 75.90 88.93 10.27 56.08

7 11.91 11.64 74.91 88.54 10.59 52.21

8 12.74 14.61 71.44 85.73 10.92 57.52

9 12.98 13.36 72.18 86.39 11.17 68.24

10 13.56 11.75 72.39 88.34 12.14 78.40

11 13.77 10.91 73.27 89.02 12.22 71.68

12 13.45 13.75 71.11 86.34 11.79 56.37

13 14.40 13.73 70.75 86.51 12.28 70.94

14 14.13 11.27 73.03 88.90 12.66 21.00

15 14.18 11.19 72.88 88.94 12.71 75.20

16 14.47 10.87 73.65 89.01 12.41 89.95

17 15.87 11.27 71.68 88.83 13.98 24.93

18 14.86 12.82 70.76 86.66 13.11 79.99

19 14.79 11.33 72.70 89.05 12.81 27.80

20 14.81 11.33 72.36 88.93 13.11 20.13

21 15.25 12.70 70.66 86.73 13.07 31.06

22 15.27 12.72 70.04 87.26 13.31 26.61

23 15.84 10.13 72.20 89.99 14.16 31.47

24 15.48 13.07 70.11 86.86 13.35 25.69

25 15.63 10.95 71.86 89.04 13.88 47.41

26 15.68 10.48 72.24 89.28 14.12 87.44

SEC 0.27 0.17 0.43 0.25 0.29 4.24

SEP 0.34 0.34 0.57 0.30 0.29 5.87

APR 100.25 99.63 100.00 100.06 100.27 103.32

SD 1.92 2.82 0.80 0.34 1.96 14.97
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twenty independent prediction spectra with two separate
prediction sets as shown in Table 1 (prediction set 1 and
prediction set 2), which are not used in the calibration
step. Because of the random nature of the GILS
method, the program was set to run thirty times with
twenty genes and fifty iterations. As the GILS program
is iterated fifty times in each run, full cross validation is
applied during the model building step to avoid possible
overfitting problems. The model with the lowest SEC
and at the same time, generating an SEP value in
agreement with the SEC is chosen as the best model.
Table 2 shows the predicted moisture and protein
content of prediction sets together withSEC and SEP
results for calibration and prediction sets, respectively.
The average percent recoveries (APR) along with the
standard deviations (SD) of APR were also given for
both prediction sets. As can be seen from the Table 2, the
best SEC and SEP values were ranged between 0.08%
and 0.37% by mass for both moisture and protein
content. These values are very similar with the values
reported in the literature using the same data set
obtained by partial least squares (PLS) method
(Kalivas, 1997). APR and associated SD values for the
prediction sets are also given in the last two rows of
Table 2. As can be seen, both moisture and protein

determinations were resulted with SD values ranging
from 1.45% to 3.15%, indicating that the GILS method
was able to generate successful calibration models. The
plot of actual versus GILS predicted concentrations for
both moisture and protein are illustrated in Fig. 2. While
the R2 values were ranged between 0.991 and 0.992 for
the calibration models of both properties, predictions
were slightly spread out. However, good correlations
between predicted and actual values were observed.
Because GILS is a wavelength selection-based meth-

od, it is interesting to observe the distribution of selected
wavelengths in multiple runs over the entire full spectral
region. Figure 3 illustrates the frequency distribution of
selected wavelengths in thirty runs for both moisture
and protein content. Although there is not a very strong
dominance of any particular wavelength range over the
entire full spectral region, there are some distinct regions
indicating a higher selection frequency as seen in the
figure and in each run, GILS method was able to
generate successful calibration models.
Material 2 contained 176 diffuse reflectance spectra

and were split into calibration and prediction sets with
the first 150 of them as calibration set and the remaining
26 of them as the prediction set. This second data set
was given with the quality parameters like protein
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Figure 4 Actual versus genetic inverse least

squares (GILS)-predicted values of parame-

ters investigated by the GILS method in

material 2: (a) protein, (b) moisture, (c) other

residues in wheat, (d) dry mass, (e) protein in

dry mass and (f) hardness.
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content, moisture content, other residues, dry mass,
protein content in dry mass and hardness that were
determined previously. Table 3 shows the reference
values of these six properties in the prediction set with
twenty-six samples. For example, the protein content in
raw sample ranges between 9.83% and 15.95% by mass
and the moisture values ranged from 11.10% to 14.61%
by mass. Several calibration models were generated for
each property using GILS method in the same way
outlined here with one difference. The number of
calibration samples was 150 and this number was too
large to apply full cross validation method to avoid
possible overfitting of the models. To eliminate the
problem, half validation approach was used in the GILS
method in which all the odd numbered samples in the
original calibration set were selected for model building
step and the even numbered samples were reserved for
model validation in each iteration. This approach not
only eliminates the overfitting, but also significantly
reduces the iteration time.
Table 4 shows the GILS-predicted values of the six

properties studied in the second data set along with the
SEC, SEP, APR and SD of APR. Very similar SEC and

SEP values for all the properties except hardness were
obtained ranging from 0.17% to 0.57% by mass indica-
ting good fit for the models generated. The SEC and SEP
values for hardness were 4.25% and 5.87% (arbitrary),
respectively. The SD of APR were ranged between 0.34
and 2.82 for all the properties except hardness. The SD
obtained for hardness was 14.97 indicating somewhat
poor prediction. The plot of actual versus GILS-predic-
ted concentrations for all properties are illustrated in
Fig. 4. The R2 values were ranged between 0.982 and
0.993 for the calibration models of all properties. As can
be seen from Fig. 4, very good predictions were observed
for the prediction set with the exception of a few samples.
The frequency distributions of selected wavelengths

in thirty runs for all the properties are illustrated in
Fig. 5. Once again, the distribution of selected wave-
lengths does not seem to indicate a strong localization
of the algorithm, but regions around 1300 and
1900 nm show higher selections than the rest of the
spectrum. This could be considered as an indication
that the genetic algorithm incorporated into the GILS
method focus the regions, where the most concentra-
tion-related information is contained. As a result, it
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Figure 5 Frequency distribution of genetic

inverse least squares (GILS)-selected wave-

lengths on the near infrared (NIR) diffuse

reflectance spectra of material 2 for the par-

ameters: (a) protein, (b) moisture, (c) other

residues in wheat, (d) dry mass, (e) protein in

dry mass and (f) hardness.
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can be said that the GILS method can be used for fast
and simultaneous determination of several chemical
and physical properties of wheat samples using their
NIR spectra.

Conclusions

This study has demonstrated the application of NIR
spectroscopy with genetic multivariate calibration to
simultaneous determination of several properties of
wheat samples. The fact that the SEP values are below
0.50% by mass for moisture, protein content, dry mass
and other residues, show that NIR spectroscopy can be
used for simultaneous determination of chemical and
physical properties of wheat. On the other hand, the GA
used in the GILS method is able to select and extract the
most relevant information to build successful calibration
models that have high predictive ability for the inde-
pendent test samples.
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