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Abstract— We provide an iterative and a non-iterative channel
impulse response (CIR) estimation algorithm for communica-
tion systems which utilize a periodically transmitted training
sequence within a continuous stream of information symbols.
The iterative procedure calculates the (semi-blind) Best Linear
Unbiased Estimate (BLUE) of the CIR. The non-iterative version
is an approximation to the BLUE CIR estimate, denoted by a-
BLUE, achieving almost similar performance, with much lower
complexity. Indeed we show that, with reasonable assumptions,
a-BLUE channel estimate can be obtained by using a stored copy
of a pre-computed matrix in the receiver which enables the use of
the initial CIR estimate by the subsequent equalizer tap weight
calculator. Simulation results are provided to demonstrate the
performance of the novel algorithms for 8-VSB ATSC Digital
TV system. We also provide a simulation study of the robustness
of the a-BLUE algorithm to timing and carrier phase offsets.

KEY WORDS: channel estimation, least squares, best
linear unbiased estimator, signal processing for communi-
cations applications, carrier and timing offsets

I. INTRODUCTION

For the communications systems utilizing periodically trans-
mitted training sequence, least-squares (LS) based channel
estimation or the correlation based channel estimation algo-
rithms have been the most widely used two alternatives [1].
Both methods use a stored copy of the known transmitted
training sequence at the receiver. The properties and the length
of the training sequence are generally different depending on
the particular communication system’s standard specifications.
However most channel estimation schemes ignore the baseline
noise term which occurs due to the correlation of the stored
copy of the training sequence with the unknown symbols ad-
jacent to transmitted training sequence, as well as the additive
channel noise [1], [9]. In the sequel, we provide (semi-blind)
Best Linear Unbiased Estimate (BLUE) and approximate

BLUE (a-BLUE) channel estimators for communication sys-
tems using a periodically transmitted training sequence. Our
novel CIR estimation algorithms can be considered as semi-
blind techniques since these methods take advantage of the
statistics of the data [3]. Although the examples following the
derivations of the BLUE and the a-BLUE channel estimators
will be drawn from the ATSC digital TV 8-VSB system [2],
to the best of our knowledge it could be applied with minor
modifications to any digital communication system with linear
modulation which employs a periodically transmitted training
sequence. The novel algorithm presented in the sequel is
targeted for the systems that are desired to work with channels
having long delay spreads Ld; in particular we consider the
case where (NT +1)/2 < Ld < NT , where NT is the dura-
tion of the available training sequence. For instance the 8-VSB
digital TV system has 728 training symbols, whereas the delay
spreads of the terrestrial channels have been observed to be at
least 400-500 symbols long [4], [5]. The a-BLUE algorithm
can be used as an initializer to the BLUE iterations[7], or
as a stand-alone alternative[6] approach that produces results
of nearly the same quality as the results produced by the
BLUE algorithm while at the same time requiring much
less computational complexity (i.e., requiring about the same
number of multiplications necessary to implement ordinary
least squares) and having storage requirements similar to that
of ordinary least squares.

A. Overview of Generalized Least Squares

Consider the linear model

y = Ax + ν (1)

where y is the observation (or response) vector, A is the
regression (or design) matrix, x is the vector of unknown
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parameters to be estimated, and ν is the observation noise
(or measurement error) vector. Assuming that it is known that
the random noise vector ν is zero mean, and is correlated,
that is Cov{ν} = Kν ≡ 1

2E{ννH} �= σ2
νI , we define the

(generalized) objective function for the model of (1) by

JGLS(x) = (y − Ax)HK−1
ν (y − Ax). (2)

The least squares estimate that minimizes Equation (2) is

x̂gls = (AHK−1
ν A)−1AHK−1

ν y, (3)

The estimator of (3) is called the best linear unbiased estimate
(BLUE) [8] among all linear unbiased estimators if the noise
covariance matrix is known to be Cov{ν} = Kν . The
estimator of (3) is called the minimum variance unbiased
estimator (MVUE) among all unbiased estimators (not only
linear) if the noise is known to be Gaussian with zero mean
and with covariance matrix Kν , that is x̂ols is called MVUE
if it is known that ν ∼ N (0,Kν).

II. OVERVIEW OF DATA TRANSMISSION MODEL

The baseband symbol rate sampled receiver pulse-matched
filter output is given by

y[n] ≡ y(t)|t=nT =
∑

k

Ikh[n − k] + ν[n]

=
∑

k

Ikh[n − k] +
∑

k

η[k]q∗[−n + k], (4)

where Ik =
{

ak, 0 ≤ k ≤ N − 1
dk, N ≤ n ≤ N ′−1,

}
∈A≡{α1,· · · , αM}

is the M -ary complex valued transmitted sequence, A ⊂C
1,

and {ak} ∈ C
1 denote the first N symbols within a frame

of length N ′ to indicate that they are the known training
symbols, and the remaining N ′ − N symbols {dk} ∈ C

1

are the information symbols; ν[n] = η[n] ∗ q∗[−n] denotes
the complex (colored) noise process after the (pulse) matched
filter, with η[n] being a zero-mean white Gaussian noise
process with variance σ2

η per real and imaginary part;

h(t) = q(t) ∗ c(t) ∗ q∗(t) =
L∑

k=−K

ckp(t − τk) (5)

is the complex valued impulse response of the composite
channel, including pulse shaping transmit filter q(t), the
physical channel impulse response c(t), and the receive filter
q∗(−t); p(t) = q(t) ∗ q∗(−t) is the convolution of the
transmit and receive filters where q(t) has a finite support
of [−Tq/2, Tq/2], and the span of the transmit and receive
filters, Tq, is an even multiple of the symbol period, T ;
that is Tq = NqT , Nq = 2Lq ∈ Z

+. {ck} ⊂ C
1 denote

complex valued physical channel gains, and {τk} denote the
multipath delays, or the Time-Of-Arrivals (TOA). It is assumed
that the time-variations of the channel is slow enough that
c(t) can be assumed to be a static inter-symbol interference
(ISI) channel, at least throughout the training period. With-
out loss of generality, the symbol rate sampled composite
CIR, h[n], can be written as a finite dimensional vector

h = [h[−Na], · · · , h[−1], h[0], h[1], · · · , h[Nc]]T where Na

and Nc denote the number of anti-causal and causal taps of
the channel, respectively, and Ld = (Na + Nc + 1)T is the
delay spread of the channel (including the pulse tails). The
pulse matched filter output which includes all the contributions
from the known training symbols (which includes the adjacent
random data as well) can be written as1

y[−Na:N+Nc−1] = (A + D) h + ν [−Na:N+Nc−1]

= Ah + Dh + Qη[−Na−Lq :N+Nc−1+Lq ],(6)

= Ah + Hd + Qη[−Na−Lq :N+Nc−1+Lq ],(7)

where A = T {[a0, · · · , aN−1, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]T , [a0, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]},

is a Toeplitz matrix2 of dimension (N +
Na + Nc) × (Na + Nc + 1), and D =
T {[0, · · · , 0︸ ︷︷ ︸

N

, dN , · · · , dNc+Na+N−1]T , [0, d−1, · · · , d−Nc−Na
]},

is a Toeplitz matrix which includes the adjacent unknown
symbols, prior to and after the training sequence.
The data sequence [d−1, · · · , d−Nc−Na

] is the unknown
information symbols transmitted at the end of the frame
prior to the current frame being transmitted. Q is of
dimension (N + Na + Nc) × (N + Na + Nc + Nq)

and is given by Q =




qT 0 · · · 0
0 qT · · · 0
...

...
. . .

...
0 0 · · · qT


 and

q = [q[+Lq], · · · , q[0], · · · , q[−Lq]]T , and

H = HST , (8)

h̄ = [h[Nc], · · · , h[1], h[0], h[−1], · · · , h[−Na]]T = Jh,(9)

J =




0 · · · 0 1
0 · · · 1 0
...

...
...

1 0 · · · 0




(Na+Nc+1)×(Na+Nc+1)

(10)

H =




h̄
T 0 · · · 0
0 h̄

T · · · 0
...

...
. . .

...

0 0 · · · h̄
T



(N+Nc+Na)×(N+2(Na+Nc))

,(11)

(12)

1The notation of y[n1:n2] with n2 ≥ n1 indicates the column vector

y[n1:n2] = [y[n1], y[n1 + 1], · · · , y[n2]]T .

Same notation will also be applied to the noise variables ν[n], η[n], where
ν[n] is the complex AWGN at the input to receive filter, η[n] is the colored
noise at the output of the receive filter.

2The notation of T {a, bT } stands for a Toeplitz matrix of dimension
M × N with first column a = [a0, . . . , aM−1]

T and first row b =
[b0, . . . , bN−1]

T , with a0 = b0.



and d = Sd̃, or equivalently d̃ = ST d, where

d̃ = [d−Nc−Na
, · · ·, d−1,01×N , dN , · · ·, dN+Nc+Na−1]T (13)

d = [d−N−Na
, · · · , d−1, dN , · · · , dN+Nc+Na−1]T (14)

S =
[

INa+Nc
0(Na+Nc)×N 0(Na+Nc)

0(Na+Nc) 0(Na+Nc)×N INa+Nc

]
. (15)

where h̄ is the time reversed version of h (re-ordering is
accomplished by the permutation matrix J ), and H is of
dimension (N + Na + Nc) × (2(Nc + Na)) with a “hole”
inside which is created by the selection matrix S, where S is
(2(Nc+Na))× (N+2(Na+Nc)) dimensional selection matrix
which retains the random data, eliminates the N zeros in the
middle of the vector d̃.

III. OVERVIEW OF THE BLUE CIR ESTIMATOR

For comparison purposes we first provide the well known
correlation and ordinary least squares based estimators, where
correlations based estimation is denoted ĥu (the subscript u

stands for the uncleaned CIR estimate) and is given by

ĥu =
1

ra[0]
AHy[−Na:N+Nc−1], (16)

with ra[0] =
N−1∑
k=0

‖ak‖2, and the ordinary least squares CIR

estimate is denoted by ĥc (the subscript c stands for the
cleaned CIR estimate) and is given by

ĥc = (AHA)−1AHy[−Na:N+Nc−1], (17)

where “cleaning” is accomplished by removing the known
sidelobes of the aperiodic correlation operation which is
accomplished in (16).

We can denote the two terms on the right side of Equa-
tion (7) by v = Hd + Qη[−Na−Lq :N+Nc−1+Lq ]. Hence we
rewrite (7) as

y[−Na:N+Nc−1] = Ah + v. (18)

By noting the statistical independence of the random vectors
d and η, and also noting that both vectors are zero mean, the
covariance matrix, Kv of v is given by

Cov{v} = Kv ≡ 1
2
E{vvH} =

Ed

2
HHH + σ2

ηQQH , (19)

where Ed is the energy of the transmitted information symbols,
and equals to 21 if the symbols {dk} are chosen from the set
{±1,±3,±5,±7}. For the model of (18) the generalized least
squares objective function to be minimized is

JGLS(h)=
(
y[−Na:N+Nc−1]−Ah

)H
K−1

v

(
y[−Na:N+Nc−1]−Ah

)
. (20)

Then the generalized least-squares solution to the model of
Equation (18) which minimizes the objective function of
JGLS(y) is given by

ĥK = (AHK−1
v A)−1AHK−1

v y[−Na:N+Nc−1]. (21)

The problem with Equation (21) is that the channel estimate
ĥK is based on the covariance matrix Kv , which is a function

of the true channel impulse response vector h as well as
the channel noise variance σ2

η. In actual applications the
BLUE channel estimate of Equation (21) can not be exactly
obtained. Hence we need an iterative technique to calculate
generalized least squares estimate of (21) where every iteration
produces an updated estimate of the covariance matrix as
well as the noise variance. Without going into the details,
a simplified version of the iterations, which yield a closer
approximation to the exact BLUE CIR estimate after each step,
is provided in Algorithm 1. In the intermediate steps noise
variance is estimated by σ2

η = 1
2Eq(N−Na−Nc)

‖ŷ[Nc:N−Na] −
y[Nc:N−Na]‖2, where Eq = ‖q‖2 and ŷ[Nc:N−Na] = Ãĥth,
Ã = T

{
[aNc+Na

, · · ·, aN−1]T , [aNc+Na
, · · ·, a0]

}
. For further

details regarding the BLUE algorithm, the readers are referred
to [7].

Algorithm 1 Iterative Algorithm to obtain a CIR estimate via
Generalized Least-Squares

[1] Get an initial CIR estimate using one of (16) or (17), and
denote it by ĥ[0];

[2] Threshold the initial CIR estimate, and denote it by ĥ
(th)

[0];
[3] Estimate the noise variance σ2

η[0]
[4]
for k = 1, . . . , Niter do

[4-a] Calculate the inverse of the (es-
timated) covariance matrix K

−1

v [k] =
Ed
2

H(ĥ
(th)

[k − 1])HH(ĥ
(th)

[k − 1]) + σ2
η[k − 1]QQH

−1

;

[4-b] ĥK [k] = (AHK
−1

v [k]A)−1AHK
−1

v [k]y[−Na:N+Nc−1];
[4-c] Threshold the CIR estimate ĥK [k], and denote it by

ĥ
(th)

[k];
[4-d] Estimate the noise variance σ2

η[k].
end for

A. Approximate BLUE CIR estimation

An alternative approach may be used to produce results
of nearly the same quality as the results produced by the
algorithm described in Algorithm 1 while at the same time
requiring much less computational complexity (i.e., requiring
about the same number of multiplications necessary to imple-
ment Equation (17)) and having storage requirements similar
to that of Equation (17). According to this alternative, the
initial least squares estimation error can be reduced by seeking
an approximation in which it is assumed that the baseband
representation of the physical channel c(t) is a distortion-free
(no multipath) channel; that is

c(t) = δ(t) (22)

which implies h(t) = p(t) ∗ c(t) = p(t). Thus we can assume
that our finite length channel impulse response vector can be
(initially) approximated by

h̃ = [0,· · · ,0︸ ︷︷ ︸
Na−Nq

, p[−Nq],· · · , p[0],· · · , p[Nq]︸ ︷︷ ︸
raised cosine pulse

, 0,· · · , 0︸ ︷︷ ︸
Nc−Nq

]T (23)



with the assumptions of Na ≥ Nq and Nc ≥ Nq, that is
the tail span of the composite pulse shape is well confined to
within the assumed delay spread of [−NaT,NcT ]. Then the
approximation of (23) can be substituted into Equations (10-
12) to yield an initial (approximate) channel convolution
matrix H̃ and is given by H̃ = H̃ST where H̃ is formed
as in Equation (12) with ¯̃h = Jh̃. We can also assume a
reasonable received Signal-to-Noise (SNR) ratio measured at
the input to the matched filter which is given by

SNR =
Ed ‖(c(t) ∗ q(t))|t=nT ‖2

σ2
η

=
Ed ‖q‖2

σ2
η

. (24)

For instance we can assume an approximate SNR of 20dB
yielding an initial noise variance of σ̃2

η = Ed‖q‖2

100 . Then
combining H̃ and σ̃2

η we can pre-calculate the initial approx-
imate covariance matrix where the covariance matrix of the
approximate channel is given by

K̃v(H̃) =
1
2
EdH̃H̃

H
+ σ̃2

ηQQH , (25)

which further leads to the initial channel estimate of

ĥK̃ =
(
AH[K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1

︸ ︷︷ ︸
pre-computed and stored

y[−Na:N+Nc−1]. (26)

Equation (26) is the resulting a-BLUE CIR estimate. The key
advantage of the a-BLUE is that the matrix(

AH [K̃v(H̃)]−1A
)−1

AH [K̃v(H̃)]−1

is constructed based on the initial assumptions that the receiver
is expected to operate, and can be pre-computed and stored
in the receiver. By pre-computing and storing the matrix(
AH [K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1 as in Equation (26)
we obtain a CIR estimate with much lower computational
complexity than the BLUE algorithm, and with comparable
complexity as the standard least squares of Equation (17). We
also note that a-BLUE CIR estimate can be used either as a
stand-alone CIR estimator, or an initial estimate which can be
used by the BLUE algorithm; additionally it can be used as
an initial CIR estimate to be used in the calculation of the tap
weights of a subsequent equalizer.

IV. SIMULATIONS

We considered an 8-VSB [2] receiver with a single antenna.
8-VSB system has a complex raised cosine pulse shape [2].
The CIR we considered is given in Table I. The phase angles of
individual paths for all the channels are taken to be arg{ck} =
exp(−j2πfcτk), k = −1, · · · , 6 where fc = 50

Tsym
and

Tsym = 92.9nsec. The simulations were run at 28dB Signal-
to-Noise-Ratio (SNR) measured at the input to the receive
pulse matched filter, and it is calculated by

SNR =
Ed ‖{c(t) ∗ q(t)}t=kT ‖2

σ2
η

. (27)

Figure 1 shows the simulation results for the test channel
provided in Table I. Part (a) shows the actual CIR; part (b)

TABLE I

SIMULATED CHANNEL DELAYS IN SYMBOL PERIODS, RELATIVE

GAINS. L = −1, K = 6,
Ld ≈ (1 + 333 + 2Nq)T = 453T ≈ 44µSEC, Nq = 60.

Channel taps Delay {τk} Gain {|ck|}
k = −1 -0.957 0.7263

Main k = 0 0 1
k = 1 3.551 0.6457
k = 2 15.250 0.9848
k = 3 24.032 0.7456
k = 4 29.165 0.8616
k = 5 221.2345 0.6150
k = 6 332.9810 0.4900

shows the correlation based CIR estimate, of Equation (16)
ĥu; part (c) shows the ordinary LS based CIR estimate of
Equation (17) ĥc; part (d) shows the a-BLUE CIR estimate
of Equation (26) with an assumed SNR of 22dB; part (e)
shows the BLUE based CIR estimate of Algorithm 1, after
the first iteration only ĥK [1]; part (f) shows the ideal BLUE
case for which the true covariance matrix Kv is known. Part
(f) provides a bound for the rest of the BLUE algorithm. We
note superior performance of the BLUE algorithm even after
the first iteration, as compared to the correlation based and
ordinary least squares based CIR estimation schemes. However
iterative BLUE CIR estimation algorithm is computationally
very demanding, thus in many applications the approximate
BLUE, as shown in part (d), could be sufficiently acceptable
as an initial estimate, and a-BLUE outperforms the ordinary
LS based CIR estimate of Equation (17). The performance
measure is the normalized least-squares error which is defined
by ENLS = ‖h−ĥ‖2

Na+Nc+1 . Approximate BLUE significantly
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Fig. 1. Part (a) shows the real part of the actual CIR; part (b) shows the
correlation based CIR estimate of Equation (16) ĥu; part (c) shows the LS
based CIR estimate of Equation (17) ĥc; part (d) shows the approximate
BLUE CIR estimate of Equation (26) with an assumed SNR of 22dB; part (e)
show the BLUE based CIR estimate of Algorithm 1, after the first iteration,
ĥK [1]; part (f) shows the ideal BLUE case for which the true covariance
matrix Kv is known, which provides a bound for the rest of the estimators.



outperforms the ordinary least squares CIR estimation, but it
has virtually identical computational complexity and storage
requirement.

A. Robustness of the a-BLUE Algorithm to Timing and
Carrier Offsets

The robustness of the a-BLUE CIR estimator to (clock) tim-
ing offset and carrier phase offset has also been studied. The
assumed channel impulse response shown in Equation (23)
consists of perfectly sampled composite pulse shape appearing
in the middle of the CIR vector. One may want to investigate
the effect of having a receiver timing offset and/or the carrier
phase offset on the a-BLUE algorithm.

For timing offset simulations the CIR’s are created as

h̃to = [0, · · · , 0︸ ︷︷ ︸
Na−Nq

, p[−Nq+εto], · · · , p[−1+εto],

p[εto], p[1+εto], · · · , p[Nq+εto], 0, · · · , 0︸ ︷︷ ︸
Nc−Nq

]T (28)

where εto ∈ (−T
2 , T

2 ] is the timing offset. Then for the channel
of (28) with a fixed εto ∈ (−T

2 , T
2 ], we estimated the CIR us-

ing Equation (26), and calculated the least squares estimation
error ENLS between the actual CIR and the estimated CIR.

Similarly, for carrier phase offset simulations the CIR’s are
created as

h̃co = εco[0, · · · , 0︸ ︷︷ ︸
Na−Nq

, p[−Nq], · · · , p[−1],

p[0], p[1], · · · , p[Nq], 0, · · · , 0︸ ︷︷ ︸
Nc−Nq

]T (29)

where εco = exp(−j2πθ) is the unit complex vector that
rotates the original CIR with respect to the offset angle θ ∈
(−π, π]. Then for the channel of (29) with a fixed εco, we
estimated the CIR using Equation (26), and calculated the least
squares estimation error ENLS between the actual CIR and the
estimated CIR.

The results obtained by varying the timing offset εto, and
the carrier offset εco are provided in Figure 2 parts (a) and
(b) respectively. As can be seen in Figure 2 parts (a) there
is a slight degradation in the resulting CIR estimate due to
timing offset which is normally expected; however a-BLUE
algorithm is insensitive to carrier phase offset. Both figures
show the robustness of the a-BLUE algorithm to timing and
carrier phase offsets.

V. CONCLUSION

This paper demonstrates the BLUE and a-BLUE CIR esti-
mation algorithms for channels with long delay spreads, where
the number of training symbols can be insufficient to support
the length of the channel. In particular we show that a-BLUE
initial channel estimation algorithm significantly outperforms
the standard least squares and correlation based initial chan-
nel estimation algorithms achieving the same computational
complexity. This feature makes the a-BLUE algorithm an at-
tractive choice for receivers employing channel estimate based
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Fig. 2. Simulation results showing the robustness of the a-BLUE algorithm
to (a) timing offset, and (b) carrier recovery phase offset.

(indirect) equalizers [5], or for receivers with direct adaptive
equalizers where a quick and reliable channel information is
needed for equalizer tap weight initialization.

We also demonstrated the robustness of the a-BLUE algo-
rithm to timing and carrier offsets when there is no multipath
present.
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