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Abstract
Wireless sensor networks (WSNs) consist of compact deployed sensor nodes which collec-
tively report their sensed readings about an event to the Base Station (BS). In WSNs, due 
to the dense deployment, sensor readings can be spatially correlated and it is nonessential 
to transmit all their readings to the BS. Therefore, for more energy efficient, it is vital to 
choose which sensor node should report their sensed readings to the BS. In this paper, the 
event distortion-based clustering (EDC) algorithm is proposed for the spatially correlated 
sensor nodes. Here, the sensor nodes are assumed to harvest energy from ambient electro-
magnetic radiation source. The EDC algorithm allows the energy-harvesting sensor nodes 
to select and eliminate nonessential nodes while maintain an acceptable level of distortion 
at the BS. To measure the reliability, a theoretical framework of the distortion function is 
first derived for both single-hop and two-hop communication scenarios. Then, based on 
the derived theoretical framework, the EDC algorithm is introduced. Through extensive 
simulations, the performance of the EDC algorithm is evaluated in terms of achievable 
distortion level, number of alive nodes and harvested energy levels. As a result, EDC algo-
rithm can successfully exploit both the spatial correlation and energy harvesting to improve 
the energy efficiency while preserving an acceptable level of distortion. Furthermore, the 
performance comparisons reveal that the two-hop communication model outperforms the 
single-hop model in terms of the distortion and energy-efficiency.

Keywords  Wireless sensor networks (WSNs ) · Clustering · Spatial correlation · 
Distortion · Energy-efficient

1  Introduction

Wireless sensor networks (WSNs) consist of a set of sensor nodes which together sense 
an event signal generated by a source in an event area [1, 2]. The readings of these sensor 
nodes are then forwarded to the Base Station (BS) to be accessible at the end user. The 
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deployment of the sensor nodes can be either random or fixed based on the application 
requirements [3]. The random deployment allows a WSN to be scattered over unreachable 
environments such as battlefield. However, when deployment is random, it is not guaran-
teed that the sensor nodes cover all the event region [4]. This coverage challenge can be 
handled by increasing density of nodes. In this case, sensor readings may be spatially-cor-
related, which makes some sensor nodes reporting redundant and nonessential readings[5, 
6].

The main aim of this paper is to determine and eliminate these sensor nodes which are 
inessential to reconstruct the source event signal while keeping an acceptable distortion. 
To this end, the event distortion-based clustering (EDC) algorithm is proposed for a WSN 
in which sensor nodes are assumed to harvest their energy from ambient electromagnetic 
radiation source [7]. The EDC algorithm involves two main operations. The first one is the 
node elimination, based on the reliability threshold. In this step, the nonessential sensor 
nodes are determined and eliminated. The second operation is the clustering formation. In 
this operation, the sensor nodes are clustered by using vector quantization (VQ) scheme, 
and sensor node locations are an input. The operations of the EDC algorithm are given for 
both single-hop and two-hop communication models. For each of those models, a different 
distortion function is derived and employed within the EDC algorithm, to verify the reli-
ability performance level. The performance of the EDC algorithm is evaluated by using 
different metrics such as achieved distortion level, number of alive nodes and harvestable 
energy levels. As a result, the EDC algorithm can successfully exploit both spatial correla-
tion and energy harvesting, while preserving an acceptable level of distortion, to improve 
the energy efficiency. Furthermore, the performance comparisons reveal that the two-hop 
communication model outperforms the single-hop model in terms of distortion level and 
energy-efficiency.

The remaining parts of this paper are organized as follows. In Sect. 2, the related works 
are introduced. The system models and assumptions are given in Sect. 3. By introducing 
the distortion functions for the single-hop and two-hop communication models, the opera-
tions of the EDC algorithm are presented in Sect. 4. The EDC performance evaluations and 
simulation results are discussed in Sect. 5. Then, the concluding remarks and future direc-
tions are given in Sect. 6.

2 � Related Works

One of the most eminent algorithms to utilize spatial correlation in WSNs is given in [6]. 
In particular, the Iterative Node Selection (INS) algorithm is proposed in [6] to eliminate 
the nonessential nodes by jointly employing both Vector Quantization (VQ) and recon-
struction distortion for event signal. The INS algorithm determines a set of representative 
nodes to represent all the nodes to ignore and eliminate the remaining ones. The INS algo-
rithm is based on just a single-hop channel communication model, and it does not consider 
the channel noise in the derivation of the reconstruction distortion function for VQ. Fur-
thermore, the INS algorithm considers only the sensor nodes that battery-powered based, 
and the energy-harvesting based sensors are not considered.

In [8], which is the conference version of this paper, we presented an event distortion-
based node selection (EDNS) algorithm for a WSN with energy-harvesting sensor nodes. 
The EDNS algorithm is based on a single-hop communication channel model. The two-
hop communication model and the associated reconstruction distortion function are not 
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taken into consideration by the EDNS algorithm. Hence, both INS and EDNS algorithms 
are based on only single-hop communication model whose energy consumption rate is 
higher than the two-hop communication model as will be clarified later.

Many clustering algorithms have been also introduced in the WSN literature [9], to 
improve energy-efficiency by exploiting correlation among sensor nodes. In [10], the cor-
related clusters are formed, and the associated cluster heads are determined based on both 
the degree of correlation and residual energy. Furthermore, the size of each cluster is deter-
mined by using the correlation threshold. In each cluster, one sensor node is responsible for 
reporting the sensed readings to the BS, and the remaining nodes are kept in sleep state. 
Although the proposed algorithm can significantly reduce the energy consumption rate, but 
it does not take into account the reliability of the data delivered to the BS through a distor-
tion function or any other error control scheme.

In [11], energy balanced distributed clustering protocol (EBDCP) is proposed. The main 
aim of this work is to balance the distribution of energy consumption over the entire sensor 
network. The selection of cluster heads and the formation of clusters are achieved so that 
the total energy consumption of the sensor network is reduced. However, EBDCP does not 
consider the reliability of sensor network in clustering formation and cluster head selec-
tion. In [12], the authors propose energy harvesting–cluster head rotation scheme (EH-
CHRS) algorithm to minimize the energy overflow and energy outage. This is done by 
optimally selecting cluster head (CH) and CH rotation scheme based on energy harvesting 
rate and the distance to the sink node. Also, in this paper, the author does not consider the 
reliability level of the sensor readings in selection and rotation of CHs. In our work, we 
consider energy level at each sensor with respect to energy harvesting rate, distance to the 
sink node, and reliability of sensor readings to select the optimal CHs and organize clusters 
while minimizing the distortion function.

In [13], based on the single-hop communication model, the number of sensor nodes 
reporting the event data are reduced by clustering the sensor nodes. This reduction is 
done by using two approaches: greedy corrected clustering (GCC) and K-means cluster-
ing algorithms. The GCC algorithm has the similar principles to [10]. However, in [13], 
the representative nodes are elected based on the reconstruction distortion function for the 
event signal. The distortion function has the similar form that used in [6] and [8]. In [14], 
K-means clustering algorithm has been implemented with respect to temporal correlation 
of sensed data to reduce the cost of transmissions and eliminates the redundant data. The 
accuracy of the communication is investigated based on data loss ratio. However, the loca-
tions of sensor nodes and the way how sensed data are relayed to the sink node are not 
taken into account to investigate the accuracy. Next, the network model and assumptions 
are introduced.

3 � System Model

3.1 � Network Model

The network is considered as a set of M sensor nodes which are denoted by 
ni, i ∈ {1, 2,… ,M} , where each of these sensors is homogeneous node. Furthermore, these 
sensor nodes are scattered for observing a physical phenomenon, which generates an event 
signal, i.e., S, in the event area. Each sensor node is capable to harvest energy and send its 
data to the sink node. The data can be sent through single-hop (point-to-point) and multi-hop 
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communication models as shown in Fig. 1. The sink node or Base Station (BS) is assumed to 
be located at the center of the network. In addition, the following assumptions are considered 
for the rest of the paper:

•	 Sensor nodes are dense and randomly scattered in the event area.
•	 Each sensor node is capable of regulating its transmission power levels.
•	 Sensor nodes are equipped with RF harvesting unit to harvest energy from ambient elec-

tromagnetic radiation source.

3.2 � Energy Consumption Model

In this section, the energy model of the sensor nodes is explained. The first order radio model 
[15] is used to model the energy consumption of sensor nodes. The energy consumption for 
transmitting L number of bits over d meters, i.e., ETX(L, d) , and to receive L number of bits, 
i.e., ERX(L) , are given as

where d0 is the threshold distance in meter, and it can be calculated by d0 =
√

�fs∕�mp , and 
�elec is the electron energy. Both �fs and �mp are consumed energy for amplifier in free space 
and in multi-path models, respectively. Furthermore, the consumed energy for sensing L 
bits is defined as follows

where Isens and Vsub , are respectively the sensing current and supplied voltage over the sens-
ing time Tsens . Furthermore, the consumed energy for aggregating the readings from m sen-
sor nodes, i.e., Eagg , is given as

(1)ETX(L, d) =

{

(𝜖elecL) + (𝜖fsLd
2) d ≤ d0

(𝜖elecL) + (𝜖mpLd
4) d > d0

(2)ERX(L) =�elecL

(3)Esens(L) = LTsensIsensVsub,

(4)Eagg(L,m) = LmEDA,

Fig. 1   Illustration of a wireless sensor network
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where EDA is consumed energy per bit for data aggregation. For single-hop communication 
channel model, then the total consumed energy for sensor node i to sense and transmit L 
number of bits to the BS, i.e., E(i), is given as

where d(i) represents the distance in meter between the sensor node i and the BS. On the 
other hand, for two-hop communication model, the network is clustered. Hence, the con-
sumed energy depends on the sensor node role. If the senor node is cluster member (CM), 
then the consumed energy of the CM i at the cluster k is given as

where d(k, i) is the distance in meter between the CM i and cluster head (CH) k. And if the 
sensor node is CH, then energy consumption for CH k is given by

where d(k) are distance between CH k and the BS, and mk is the number of CMs in the 
cluster k.

3.3 � Energy Harvesting Model

In this paper, a radio frequency (RF) electromagnetic source is assumed to be located in the 
event region. As in [16] and [17], the source is modelled as GSM900 cell tower. In addition 
to an antenna used for the data communication, each sensor node is assumed to have an RF 
harvesting circuit with a dedicated antenna whose receive gain is given by GR . Hence, by 
using the Friis equation, the received power, i.e., PR , can be written as

where PT and GT , respectively, are transmitted, power and antenna gain. And � is wave-
length for the receiving signal and d is the distance between the RF cell tower source and 
the sensor node.

4 � Event Distortion Based Clustering (EDC) Algorithm

In this section, the EDC algorithm is discussed. The EDC algorithm executes at the BS to 
generates the clusters of the sensor nodes so as to determine which sensor nodes should 
report their readings to the BS for an acceptable level of event signal reconstruction distor-
tion. The operations of the EDC algorithm are driven by two distortion functions, which 
are derived next for the single-hop and two-hop communication models. These distortion 
functions are used to introduce the operations of the EDC algorithm at the later sections.

4.1 � Distortion Function for Single‑Hop Communication Model

The used model for the single-hop communication with M number of sensors is illustrated 
in Fig. 2, as in [6]. Here, the aim of BS is estimating the source event signal, S, based on 

(5)E(i) = Esens(L) + ETX

(

L, d(i)
)

(6)ECM(k, i) = Esens(L) + ETX

(

L, d(k, i)
)

,

(7)ECH(k) = Eagg(L,mk) + mkERX(L) + ETX(L, d(k))

(8)PR = PT

GTGR�
2

(4�d)2
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the noisy sensor samples. Let Xi[k] denote the kth sample of the event information Si taken 
by node i. By dropping the time index k, the Xi[k] is then can be given as follows

where Ni denotes the samples for the observation noise process of independent and identi-
cally distributed (i.i.d.) Gaussian random variable with zero mean and variance �2

N
 . And Si 

represents the samples of the physical source event signal, which are sensed at the location 
of the sensor node i. These samples are also modelled as a set of Gaussian random vari-
ables with zero mean and variance �2

S
 . To model the correlation between sensor nodes, the 

power exponential model [6] is used. It is defined as the correlation coefficient, �(Si, Sj) , 
between the signal samples Si and Sj , which are sensed by the nodes i and j, respectively, as 
introduced as

where d(i, j) is the Euclidean distance in meter between node i and node j. And �2 is set to 
be 1. Also, �1 is used for adjusting the relation between correlation coefficients, �(Si, Sj) , 
and inter-node distance, d(i,  j). Hence, �1 is defined based on the sensing range of each 
sensor node, which can be estimated based on all sensors’ readings [6]. However, such an 
estimation is beyond the scope of this paper. For simplicity, in the performance evaluations 
of this paper, �1 is set to be 1000.

In order to report the noisy observation, Xi , given in (9), to the BS, the node i should 
forward its readings over the single-hop noisy channel, Wi . Then, the received signal, i.e., 
Yi , at the BS, can be defined as

where Wi is a set of i.i.d Gaussian random variables with zero mean and variance �2

W
 . Each 

sensor node transmits a scaled version of the observed sample, Xi , to meet its power con-
straint. More clearly, the scalar, �i in (11), can be defined as

(9)Xi = Si + Ni,

(10)�(Si, Sj) =
E[SiSj]

�2

S

= e(d(i,j)∕�1)
�2
,

(11)Yi = �iXi +Wi,

Fig. 2   Point-to-point network model
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where Pi is the power constraint. Both Si and Ni are assumed to be uncorrelated, hence the 
power of Xi , in (9), is restricted by �2

S
+ �2

N
 . Hence, in order to meet the power constraint, 

�i is defined as

The BS is started to calculate the estimation of each event information, Si, i ∈ {1, 2,… ,M} , 
after receiving all the readings of the sensor nodes, Yi, i ∈ {1, 2,… ,M} . The decoding 
operation is applied for each of Yi readings using the decoder block D.

As in [8], the uncoded transmission is used here. In addition, the optimum decod-
ing technique is the Minimum Mean Square Error (MMSE) estimation method. Hence, 
in order to estimate the event information, Si , the MMSE estimation is applied for 
Yi readings. Let Zi denote this estimation process. And Zi can be defined through a 
linear transformation, i.e., Zi = aYi . Here, the scaler a can be determined by solving 
�E[(Si − aYi)

2]∕�a = 0 . Then Zi can be determined as

Then, the estimated version, Ŝ , of the original event source, S, can be computed by using 
the estimations of the event readings, i.e., Zi i ∈ {1, 2,… ,M} , as follows

Finally, the distortion Dpoint of the single-hop communication can be computed by

By substituting both (14) and (15) in (16), then Dpoint is given as follows

where both �(S, Si) and �(Si, Sj) are the correlation coefficients, between event S and node 
i, and between node i and node j, respectively. Both these correlation coefficients are com-
puted by using (10). The distortion function Dpoint depends on the statistical behaviour of 
the sources and noises. Also, the distortion indicates how accurate the original event, S, 
can be estimated at the BS for the single-hop communication model.

(12)E[
(

�iXi

)2
] ≤ Pi,

(13)�i =

√

Pi

�2

S
+ �2

N

.

(14)Zi =
E[SiYi]

E[Y2

i
]
Yi =

�i �
2

S

Pi + �2

W

Yi.

(15)Ŝ =
1

M

M
∑

i=1

Zi.

(16)Dpoint = E[(S − Ŝ)2].

(17)

Dpoint = �2

S
−

�4

S

M

M
∑

i=1

Pi

Pi + �2

W

(2�(S, Si) − (1∕M))+

+
�6

S

M2

M
∑

i=1

N
∑

j≠i

�2

i
�2

j
�(Si, Sj)

(Pi + �2

W
)(Pj + �2

W
)
,
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4.2 � Distortion for Two‑Hop Communication Model

The two-hop communication model is presented in Fig.  3. In this model, there are r 
number of clusters,k ∈ {1, 2,… , r} . In each cluster k, there are one Cluster Head (CH), 
CHk , and mk number of Cluster Members (CMs),i ∈ {1, 2,… ,mk} . Each CM i in the 
cluster k, CMk,i , forwards its readings to its associated CHk . Then, CHk aggregates and 
reports to the BS. Note that the selection of the CMs and CHs will be introduced in the 
next subsection. The main aim of BS is to estimate the event source, S, based on the 
observations of the CMs, i.e., Sk,i , which is the event signal at the location of the CMk,i . 
Due to the observation noise, CMk,i observes the noisy version, Xk,i , of the event signal, 
Sk,i , as given below

where the samples of Nk,i are modelled as a set of i.i.d. Gaussian random variables with 
zero mean and variance �2

N
 . Also, the samples of Sk,i are modelled according to the jointly 

Gaussian random variables with zero mean and variance �2

S
 . These characteristics are 

assumed to be the same for all clusters. In order to forward the noisy observations, Xk,i , 
to the BS, each CMk,i send its readings to its associated CHk through the channel with the 
noise term Wk,i . Then, the received samples of Yk,i can be defined as

 where the samples of Wk,i are modelled asa set of i.i.d Gaussian random variable with zero 
mean and variance �2

W
 . Here, similar to (13), the constant �k,i is employed to satisfy the 

power constraint of the transmission and given by

(18)Xk,i = Sk,i + Nk,i

(19)Yk,i = �k,iXk,i +Wk,i,

Fig. 3   Two-hop communication model
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where the denominator represents the power of Xk,i and the numerator is the power con-
straint of CMk,i . Each CHk uses the received sample, i.e., Yk,i , to estimate the event signal 
Sk,i by following the MMSE estimation as explained in Sect. 4.1. Zk,i denotes the estimation 
and given by

Furthermore, CHk averages all of Zk,i i ∈ {1,… ,mk} to produce the event information Sk to 
transmit as follows

Then, CHk sends Sk to the BS over a channel given below

where Yk stands for the samples received by the BS, and gk is a channel noise modelled as 
i.i.d Gaussian random variables with zero mean and variance �2

g
 . The constant �k is again 

used to satisfy the power constraint and can be introduced as

Notice that Sk has zero mean and then, its power is equal to its variance, i.e., �2

Sk
 . By substi-

tuting (22) into (24), �k can be represented as

where �(Sk,i, Sk,j) is correlation coefficient between both Sk,i and Sk,j . Upon receiving the 
samples for the CHs, the BS is then tries to estimate the samples at block D, i.e., Sk , 
through the MMSE estimator as

where Zk denotes the estimation of Sk . Finally, by incorporating the estimated samples 
Zk, k ∈ {1,… , r} , the estimated version of the event signal is obtained as

(20)�k,i =

√

Pk,i

�2

S
+ �2

N

(21)Zk,i =
�k,i�

2

S

Pk,i + �2

W

Yk,i

(22)Sk =
1

mk

mk
∑

i=1

Zk,i.

(23)Yk = �kSk + gk

(24)�k =

√

Pk

E[S2
k
]
=

√

Pk

�2

Sk

(25)�k =

�

�

�

�

�

Pkm
2

k

∑mk

i=1

�2
k,i
�4

S

Pk,i+�
2

W

(1 +
∑mk

j≠i

�2
k,j
�4

S
�(Sk,iSk,j)

Pk,j+�
2

W

)

(26)Zk =
�k�

2

Sk

Pk + �2
g

Yk.

(27)Ŝ =
1

r

r
∑

k=1

Zk.
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The distortion function associated with this final estimation, i.e., Drelay , and it can be calcu-
lated in the MMSE sense as

In the derivation of Drelay , the noise terms gk , Nk,i and Wk,i are assumed to be independent 
and hence uncorrelated. Then, by substituting both (26) and (27) into (28), Drelay is calcu-
lated to be represented as

4.3 � The Operations of EDC Algorithm

In this section, by employing the vector quantization (VQ) [18], how the EDC algorithm 
determines and eliminates inessential sensor nodes is introduced. As well as, how the EDC 
algorithm forms the clusters is discussed. In particular, it employs the K-means clustering 
algorithm, with respect to single-hop and two-hop distortion constraints. The K-mean is a 
method of vector quantization and attractive for image processing applications [19]. In the 
next two subsections both node elimination and clustering are explained.

4.3.1 � Node Elimination

In this part, node elimination is explained with to respect to K-means clustering method 
[20] and single-hop distortion level. The K-mean clustering algorithm is popular technique 
for image processing. The correlated pixels can be selected by exploiting this clustering 
technique. From the viewpoint of WSNs, the K-means clustering algorithm can be used to 
exploit the spatial correlation among the sensor nodes. This is done by considering both, 
the locations of these sensors and the derived single-hop distortion from Sect. 4.1, as an 
input to the algorithm [8]. Then, the algorithm maps the two-dimensional input vectors 
(i.e., two-dimensional vector that represents the locations of the sensor nodes) into a set of 
vectors called codewords. Furthermore, the set of codewords is called as codebook. Those 
codewords are vector of two-dimensional locations of the centroids. The sensor nodes that 
are the closest to the locations of these centroids are called as unrepresentative nodes while 
the other remaining nodes are referred as representative nodes. These unrepresentative 
nodes are the eliminated ones, i.e., nodes are not required to sense the environment. Both 
representative and unrepresentative nodes are defined iteratively using k-mean clustering 
with respect to the single-hop distortion constraints.

(28)Drelay = E[(S − Ŝ)2].

(29)

Drelay =�
2

S
−

1

r2

r2
∑

k=1

Pk

Pk + gk

1

m2

k

mk
∑

i=1

�k,i�
2

S

Pk,i + �2

W

×

×

(

2rmk�(S, Sk,i) − 1 −

mk
∑

j≠i

�k,j�
2

S

Pk,j + �2

W

)

+

+
1

r2

r
∑

k=1

r
∑

l≠k

PkPl∕mkml

(Pk + �2
g
)(Pl + �2

g
)
×

×

mk
∑

i=1

mk
∑

j≠i

�k,i�k,j�
6

S

(Pk,i + �2

W
)(Pl,j + �2

W
)
�(Sk,i, Sl,j)
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4.3.2 � Clustering Formation

In this part, clustering formation is explained. In the previous part, k-mean algorithm is 
explained to find out both representative and unrepresentative nodes for given locations of 
sensor nodes and single-hop distortion constraints. In addition to these, this algorithm also 
defines the voronoi regions around these centroids to determine which region is belonged 
to each cluster. Furthermore, the EDC algorithm assigns CHs (cluster heads) role to the 
unrepresentative nodes and CMs (cluster members) role to the representative nodes. After 
the selection of the CHs, the K-nearest neighbours algorithm (K-NN) [21] is used to assign 
each CM to its kth cluster. This is done by using the Voronoi diagram of the sensor field 
with respect to all locations of CHs. As a result, each Voronoi region represents one clus-
ter, and it contains one CH and set of CMs. An example topology with the CHs, CMs and 
BS is illustrated in Fig. 4.

With EDC algorithm the representative nodes (i.e., CMs) should report their readings to 
the CHs to be aggregated and forwarded to the BS, according to the distortion constraints. 
And the CHs should not sense to save its energy. In the single-hop scenario, the Dpoint is 
computed in the BS by step-wise increasing the number of representative nodes, which 
have sufficient energy and can report the event information, until the distortion constraint is 
satisfied. Similarly, in the two-hop communication scenario, the Drelay is computed by the 
BS by step-wise increasing the number of CMs with sufficient energy until the distortion 
constraint is satisfied. The number of CMs, which have sufficient energy and satisfy the 
distortion constraint, are determined as the essential nodes and the remaining nodes do not 
sense and become inessential. These inessential (i.e., unrepresentative nodes) are CHs or 
backup CHs. The backup CHs are unactive nodes.

As soon as the CMs satisfying the distortion constraint are determined, they start to 
sense and transmit their data to the associated CHs. Then, the CHs aggregate and forward 
the sensed event information to the BS for the final estimation of the event information. In 
case of one of the active CHs are running out of energy, it set to be unactive CH and one 

Fig. 4   Clustered network with Voronoi regions



	 A. Al‑Qamaji, B. Atakan 

1 3

of the backup CHs is elected to be the active CH. In case of no existence of backup CH in 
current cluster, then one of CMs is elected to be the active CH with respect to two-hop dis-
tortion and energy constraints. In such a case, the distortion might be increase, because one 
of the essential nodes (i.e, CMs) is reduced by one. These CHs are still unactive until they 
get their energy back using RF energy harvesting.

5 � Performance Evaluations

In this section, the performance evaluations of the EDC algorithm are discussed. The sim-
ulation experiments are conducted in MATLAB. The performance is evaluated in terms 
of distortion, energy consumption rate and the network lifetime with and without energy 
harvesting.

A total of 100 sensor nodes are assumed to be deployed randomly in 100 × 100 , 
200 × 200 and 300 × 300 m2 of event area by uniform distribution. Each sensor node 
is modelled to have an additional circuit for energy harvesting [16]. The BS is set to be 
located at the center of the event area. Furthermore, a cell tower is used as energy har-
vesting source, which is located also at the center of event area. Each node harvests and 
consumes energy based on the energy model, which is introduced in Sect. 3.3. One single 
antenna is used for transmission and receiving, and one for harvesting. The detailed simu-
lation parameters are introduced in Table 1.

The EDC algorithm is first initiated to determine the representative and unrepre-
sentative nodes. The determination is done by checking the single-hop distortion con-
straint. In Fig. 5, it is shown how the distortion is reduced by increasing the number of 
representative nodes. As observed from Fig.  5, after a specific number of representa-
tive nodes, the distortion can be no longer reduced even if the number of representa-
tive nodes is further increased. The results in Fig. 5 are obtained by taking the average 
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Fig. 5   The number of representative nodes versus distortion
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over 100 trails. Then, as explained earlier, the EDC algorithm forms CMs, CHs, and 
backup CHs. This reveal that the EDC clustering algorithm can successfully eliminate 
the redundant nodes and form the clusters. In Figs. 6, 7, 8, 9, 10 and 11, without any 
consideration of energy harvesting, the performance of the EDC algorithm is given by 
comparing the single and two-hop communication models with respect to the number 
of alive nodes and the distortion. The comparisons are presented for three different 
environment size, 100 × 100 , 200 × 200 and 300 × 300 m2 . As observed, regardless of 

Table 1   Simulation parameters Parameters Values

Area 100×100 m2

200×200 m2

300×300 m2

Number of sensors, M 100
Initial energy 0.5 J
Eelec 50 nJ/bit
EDA 5 nJ/bit
�fs 10 PJ/bit/m2

�mp 0.0013 PJ/bit/m4

L data packet size 1000 Bytes
broadcast packet 25 Bytes
Packet header size 25 Bytes
Center frequency (GSM900) 950 MHZ
GT 17 dB
GR 9 dB

Fig. 6   The number of alive nodes for 100×100 m2 event area
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which environment size is considered, the two-hop communication model outperforms 
the single-hop model in terms of the number of alive nodes. This stems from the fact 
that the energy consumption increases exponentially with the communication distance 
and the two-hop model reduces the communication distance of the nodes by relaying 
the data over the cluster heads. This reveals that the two-hop communication model 

Fig. 7   Distortion for 100 × 100 m2 event area

Fig. 8   The number of alive nodes for 200 × 200 m2 event area
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prolongs the network lifetime in comparison with the single-hop model. However, the 
single-hop model is better than the two-hop model in terms of the distortion since the 
two-hop model involves three noise terms (one sensing noise and two channel noise 
terms) while the single-hop model includes two noise terms (one sensing and one chan-
nel noise term).

Fig. 9   Distortion for 200 × 200 m2 event area

Fig. 10   The number of alive nodes for 300 × 300 m2  event area
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In Figs. 12, 13, 14, 15, and 16, by enabling the sensor nodes to harvest their energy, 
it is shown that how the power level of the cell tower affects the performance of the 
EDC algorithm in terms of the distortion, energy consumption and the network lifetime. 
The power of the cell tower is changed as Pt = 10, 20, 30 Watt . As observed, the EDC 

Fig. 11   Distortion for 300 ×   300 m2 event area

Fig. 12   Distortion for P
t
= 10W
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Fig. 13   Distortion for P
t
= 20W

Fig. 14   Distortion for P
t
= 30W
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Fig. 15   Energy consumption for the different values of P
t

Fig. 16   Number of alive nodes for the different values of P
t
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algorithm can successfully utilize the power level of the cell tower to improve the net-
work lifetime time while keeping the distortion as low as possible.

6 � Conclusion

The event distortion-based clustering (EDC) algorithm is proposed to exploit the spatial 
correlations among sensor nodes for the energy-efficient communication in energy harvest-
ing WSNs. A theoretical framework of distortions for both single-hop and two-hop com-
mutation models are derived, which are used to determine which nodes should report their 
readings to the BS. Furthermore, the performance evaluations of the EDC algorithm are 
discussed for the energy-harvesting sensor nodes. The results show that the two-hop com-
munication model outperforms the single-hop communication model in terms of network 
lifetime. The two-hop model is simply having two links (i.e., two channels between the 
CMs and BS), and hence, higher distortion level is observed than one-hop model. Further-
more, it is shown that the EDC algorithm capability successfully utilize the energy harvest-
ing such that the network lifetime can be improved as the power of the source (cell tower) 
increases. The consideration of more than two hops together with the derivation of the cor-
responding distortion functions are left for a future work.
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